Transformada de Fourier en grupos abelianos finitos

En la construcción de esta monografía de antemano se da una definición de representaciones unitarias finito-dimensionales que son la base de esta monografía, esta definición se aplicara en la creación de equivalencias unitarias e irreductibilidad de las mismas, álgebras de grupos, caracteres y en el...

Full description

Autores:
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2015
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/2481
Acceso en línea:
http://hdl.handle.net/11349/2481
Palabra clave:
Transformada
Representaciones
Abeliano
Carácter
Fourier
Matemáticas - Tesis y disertaciones académicas
Grupos abelianos
Grupos finitos
Transformed
Representations
Abelian
Character
Fourier
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UDISTRITA2_69a43ce78f221046e6977b3c7b66cabb
oai_identifier_str oai:repository.udistrital.edu.co:11349/2481
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Transformada de Fourier en grupos abelianos finitos
dc.title.titleenglish.spa.fl_str_mv Fourier Transform Finite Abelian Groups
title Transformada de Fourier en grupos abelianos finitos
spellingShingle Transformada de Fourier en grupos abelianos finitos
Transformada
Representaciones
Abeliano
Carácter
Fourier
Matemáticas - Tesis y disertaciones académicas
Grupos abelianos
Grupos finitos
Transformed
Representations
Abelian
Character
Fourier
title_short Transformada de Fourier en grupos abelianos finitos
title_full Transformada de Fourier en grupos abelianos finitos
title_fullStr Transformada de Fourier en grupos abelianos finitos
title_full_unstemmed Transformada de Fourier en grupos abelianos finitos
title_sort Transformada de Fourier en grupos abelianos finitos
dc.contributor.advisor.spa.fl_str_mv Lesmes Acosta, Milton del Castillo
dc.subject.spa.fl_str_mv Transformada
Representaciones
Abeliano
Carácter
Fourier
topic Transformada
Representaciones
Abeliano
Carácter
Fourier
Matemáticas - Tesis y disertaciones académicas
Grupos abelianos
Grupos finitos
Transformed
Representations
Abelian
Character
Fourier
dc.subject.lemb.spa.fl_str_mv Matemáticas - Tesis y disertaciones académicas
Grupos abelianos
Grupos finitos
dc.subject.keyword.spa.fl_str_mv Transformed
Representations
Abelian
Character
Fourier
description En la construcción de esta monografía de antemano se da una definición de representaciones unitarias finito-dimensionales que son la base de esta monografía, esta definición se aplicara en la creación de equivalencias unitarias e irreductibilidad de las mismas, álgebras de grupos, caracteres y en el análisis de Fourier. Ahora se quieren presentar resultados sobre la Representación de grupos finitos, que puedan aplicarse principalmente a la creación de caracteres que nos permitirán construir transformadas de Fourier sobre grupos abelianos finitos.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-11-25T20:20:14Z
dc.date.available.none.fl_str_mv 2015-11-25T20:20:14Z
dc.date.created.spa.fl_str_mv 2015-10-28
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/2481
url http://hdl.handle.net/11349/2481
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv http://repository.udistrital.edu.co/bitstream/11349/2481/6/GuzmanDiazDiegoAlejandro2015.pdf.jpg
http://repository.udistrital.edu.co/bitstream/11349/2481/2/license_url
http://repository.udistrital.edu.co/bitstream/11349/2481/3/license_text
http://repository.udistrital.edu.co/bitstream/11349/2481/4/license_rdf
http://repository.udistrital.edu.co/bitstream/11349/2481/5/license.txt
http://repository.udistrital.edu.co/bitstream/11349/2481/1/GuzmanDiazDiegoAlejandro2015.pdf
bitstream.checksum.fl_str_mv a17923ebf3247b7a21c8b94e6c810e14
321f3992dd3875151d8801b773ab32ed
0c4c90d15030798a831b448203448a1a
38cb62ef53e6f513db2fb7e337df6485
b204d61d4cc8bf0ee3a2b0e84c5755dd
6071261fe6fb8d838c06d88e2d6df370
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Distrital - RIUD
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1803712629528592384
spelling Lesmes Acosta, Milton del CastilloGuzmán Diaz, Diego Alejandro2015-11-25T20:20:14Z2015-11-25T20:20:14Z2015-10-28http://hdl.handle.net/11349/2481En la construcción de esta monografía de antemano se da una definición de representaciones unitarias finito-dimensionales que son la base de esta monografía, esta definición se aplicara en la creación de equivalencias unitarias e irreductibilidad de las mismas, álgebras de grupos, caracteres y en el análisis de Fourier. Ahora se quieren presentar resultados sobre la Representación de grupos finitos, que puedan aplicarse principalmente a la creación de caracteres que nos permitirán construir transformadas de Fourier sobre grupos abelianos finitos.In the construction of this monograph in advance a definition of finite-dimensional unitary representations that are the basis of this monograph is given, this definition is applied in the creation of unitary equivalence and irreducibility of them, algebras of groups, and the characters Fourier analysis. Now they want to present results on the Representation of finite groups, which can be applied mainly to the creation of characters that allow us to build on finite Fourier transforms abelian groups.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2TransformadaRepresentacionesAbelianoCarácterFourierMatemáticas - Tesis y disertaciones académicasGrupos abelianosGrupos finitosTransformedRepresentationsAbelianCharacterFourierTransformada de Fourier en grupos abelianos finitosFourier Transform Finite Abelian Groupsinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILGuzmanDiazDiegoAlejandro2015.pdf.jpgGuzmanDiazDiegoAlejandro2015.pdf.jpgIM Thumbnailimage/jpeg4851http://repository.udistrital.edu.co/bitstream/11349/2481/6/GuzmanDiazDiegoAlejandro2015.pdf.jpga17923ebf3247b7a21c8b94e6c810e14MD56open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://repository.udistrital.edu.co/bitstream/11349/2481/2/license_url321f3992dd3875151d8801b773ab32edMD52open accesslicense_textlicense_texttext/html; charset=utf-821082http://repository.udistrital.edu.co/bitstream/11349/2481/3/license_text0c4c90d15030798a831b448203448a1aMD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-819874http://repository.udistrital.edu.co/bitstream/11349/2481/4/license_rdf38cb62ef53e6f513db2fb7e337df6485MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-85896http://repository.udistrital.edu.co/bitstream/11349/2481/5/license.txtb204d61d4cc8bf0ee3a2b0e84c5755ddMD55open accessORIGINALGuzmanDiazDiegoAlejandro2015.pdfGuzmanDiazDiegoAlejandro2015.pdfTrabajo de gradoapplication/pdf976561http://repository.udistrital.edu.co/bitstream/11349/2481/1/GuzmanDiazDiegoAlejandro2015.pdf6071261fe6fb8d838c06d88e2d6df370MD51metadata only access11349/2481oai:repository.udistrital.edu.co:11349/24812023-10-03 10:31:56.788metadata only accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyAgREUgQ09OVEVOSURPUyBFTiBFTCBSRVBPU0lUT1JJTyBJTlNUSVRVQ0lPTkFMIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTApUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgUklVRC4KCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCAgY29uZmllcm8gKGVyaW1vcykgYSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB1bmEgbGljZW5jaWEgcGFyYSB1c28gIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSAgaW50ZWdyYXLDoSAgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBhY3VlcmRvIGEgbGFzIHNpZ3VpZW50ZXMgcmVnbGFzLCAgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpIEVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSAgZW4gcXVlIHNlIGluY2x1eWEgIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBoYXN0YSAgcG9yIHVuIHBsYXpvIGRlICBkaWV6ICgxMCkgIEHDsW9zLCAgcHJvcnJvZ2FibGUgIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyAgbGEgY3VhbCBwb2Ryw6EgICBkYXJzZSAgcG9yIHRlcm1pbmFkYSAgcHJldmlhICBzb2xpY2l0dWQgICBhIGxhIFVuaXZlcnNpZGFkIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvICBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLiAgCgpiKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSAgcG9yIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsICBMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsICBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zICBkaWZlcmVudGVzIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHVuYSB2ZXogZWwob3MpIGF1dG9yKGVzKSAgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUmVwb3NpdG9yaW8gZGUgbGEgVW5pdmVyc2lkYWQsIGRhZG8gcXVlICBsYSBtaXNtYSBzZXLDoSBwdWJsaWNhZGEgZW4gIEludGVybmV0LiAKCmMpIExhIGF1dG9yaXphY2nDs24gc2UgaGFjZSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgbG9zIGF1dG9yZXMgcmVudW5jaWFuIGEgcmVjaWJpciBiZW5lZmljaW8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSAgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKSBMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgc29uICBvYnJhKHMpIG9yaWdpbmFsKGVzKSBzb2JyZSBsYSAgY3VhbChlcykgIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zICBkZXJlY2hvcyBkZSBhdXRvciwgYXN1bWVuIHRvdGFsIHJlc3BvbnNhYmlsaWRhZCBwb3IgZWwgY29udGVuaWRvIGRlIHN1IG9icmEgYW50ZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGFudGUgdGVyY2Vyb3MuIEVuIHRvZG8gY2FzbyBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkgTGEgIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHBvZHLDoSAgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgpmKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgY29udmVydGlyIGxhIG9icmEgIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluICBkZSBzdSBwcmVzZXJ2YWNpw7NuIGVuIGVsIHRpZW1wbyBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBsYSBkZSBzdXMgcHLDs3Jyb2dhcy4KQ29uIGJhc2UgZW4gbG8gYW50ZXJpb3IgYXV0b3JpesOzIGxhIHB1YmxpY2FjacOzbiB5IGNvbnN1bHRhIGRlIGxhIG9icmEgIHRpdHVsYWRhIF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KCiBBIGZhdm9yIGRlbCAgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5ICBkZSBzdXMgdXN1YXJpb3MsICAgY3V5byhzKSAgYXV0b3IoZXMpIHNvbjogCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCgphKSBBdXRvcml6byBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGF1dG9yaXphZG9zIGVuIGxvcyBsaXRlcmFsZXMgYW50ZXJpb3JlcywgIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgZW4gbGFzIOKAnENvbmRpY2lvbmVzIGRlIHVzbyBkZSBlc3RyaWN0byBjdW1wbGltaWVudG/igJ0gZGUgbG9zIHJlY3Vyc29zIHB1YmxpY2Fkb3MgZW4gUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBSSVVELCBjdXlvIHRleHRvIGNvbXBsZXRvIHNlIHB1ZWRlIGNvbnN1bHRhciBlbiBodHRwOi8vcmVwb3NpdG9yeS51ZGlzdHJpdGFsLmVkdS5jby8KCmIpIENvbm96Y28geSBhY2VwdG8gcXVlIG90b3JnbyB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIG9idGVuaWRvIHVuYSBjb3BpYS4KCmMpICBNYW5pZmllc3RvIG1pIHRvdGFsIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSB1c28geSBwdWJsaWNhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBxdWUgc2UgZGVzY3JpYmVuIHkgZXhwbGljYW4gZW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvLgoKZykgUXVlIGNvbm96Y28gICBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyByZWxhdGl2byBhIHByb3BpZWRhZCAgaW50ZWxlY3R1YWwgcmVndWxhZGEgcG9yIGVsIEFjdWVyZG8gMDA0IGRlIDIwMTIgZGVsIENTVSwgQWN1ZXJkbyAwMjMgZGUgMjAxMiBkZWwgQ1NVIHNvYnJlIFBvbMOtdGljYSBFZGl0b3JpYWwsIEFjdWVyZG8gMDI2ICBkZWwgMzEgZGUganVsaW8gZGUgMjAxMiBzb2JyZSBlbCBwcm9jZWRpbWllbnRvIHBhcmEgbGEgcHVibGljYWNpw7NuIGRlIHRlc2lzIGRlIHBvc3RncmFkbyBkZSBsb3MgZXN0dWRpYW50ZXMgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsICBBY3VlcmRvIDAzMCBkZWwgMDMgZGUgZGljaWVtYnJlIGRlIDIwMTMgcG9yIG1lZGlvIGRlbCBjdWFsIHNlIGNyZWEgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0by4gRXN0b3MgZG9jdW1lbnRvcyBwb2Ryw6FuIHNlciBjb25zdWx0YWRvcyB5IGRlc2NhcmdhZG9zIGVuIGVsIHBvcnRhbCB3ZWIgZGUgbGEgYmlibGlvdGVjYSBodHRwOi8vc2lzdGVtYWRlYmlibGlvdGVjYXMudWRpc3RyaXRhbC5lZHUuY28vICAKClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBESVNUUklUQUwgRlJBTkNJU0NPIEpPU0UgREUgQ0FMREFTLCBMT1MgQVVUT1JFUyBHQVJBTlRJWkFOIFFVRSBTRSBIQSBDVU1QTElETyBDT04gTE9TIApERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KRW4gY29uc3RhbmNpYSBkZSBsbyBhbnRlcmlvciwgZmlybW8gKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50byBhIGxvcyAKCkZJUk1BIERFIExPUyBUSVRVTEFSRVMgREUgREVSRUNIT1MgREUgQVVUT1IKCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIEF1dG9yIChlcyk6CkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb3RhOiBFbiBjYXNvIHF1ZSBubyBlc3TDqSBkZSBhY3VlcmRvIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIGp1c3RpZmlxdWUgbG9zIG1vdGl2b3MgcG9yIGxvcyBjdWFsZXMgZWwgZG9jdW1lbnRvIHkgc3VzIGFuZXhvcyBubyBwdWVkZW4gc2VyIHB1YmxpY2Fkb3MgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBSSVVECg==