Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva
Las redes de radio cognitiva (CRN) responden a la necesidad de optimizar los recursos existentes dentro de la red y fundamentalmente el uso del espectro. Esto se traduce como una oportunidad de mejorar el nivel de servicio para los usuarios de tecnologías inalámbricas, haciendo un uso oportuni sta d...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/33052
- Acceso en línea:
- http://hdl.handle.net/11349/33052
- Palabra clave:
- Redes de radio cognitiva
Tecnologías inalámbricas
Oportunidades espectrales
Espectro
Usuario secundario (SU)
Usuario primario (PU)
Telecomunicaciones
Espectro electromagnético
Espectro radioeléctrico -- Mediciones
Sistemas de amplificación multicanal
Cognitive radio networks
Wireless technologies
Spectral opportunities
Spectrum secondary
User (SU)
Primary User (PU)
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UDISTRITA2_66919d0292b1e2c9ee1a0947f378658a |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/33052 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva |
dc.title.titleenglish.spa.fl_str_mv |
Multi-channel allocation model with equity for spectral mobility in cognitive radio networks |
title |
Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva |
spellingShingle |
Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva Redes de radio cognitiva Tecnologías inalámbricas Oportunidades espectrales Espectro Usuario secundario (SU) Usuario primario (PU) Telecomunicaciones Espectro electromagnético Espectro radioeléctrico -- Mediciones Sistemas de amplificación multicanal Cognitive radio networks Wireless technologies Spectral opportunities Spectrum secondary User (SU) Primary User (PU) |
title_short |
Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva |
title_full |
Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva |
title_fullStr |
Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva |
title_full_unstemmed |
Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva |
title_sort |
Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitiva |
dc.subject.spa.fl_str_mv |
Redes de radio cognitiva Tecnologías inalámbricas Oportunidades espectrales Espectro Usuario secundario (SU) Usuario primario (PU) |
topic |
Redes de radio cognitiva Tecnologías inalámbricas Oportunidades espectrales Espectro Usuario secundario (SU) Usuario primario (PU) Telecomunicaciones Espectro electromagnético Espectro radioeléctrico -- Mediciones Sistemas de amplificación multicanal Cognitive radio networks Wireless technologies Spectral opportunities Spectrum secondary User (SU) Primary User (PU) |
dc.subject.lemb.spa.fl_str_mv |
Telecomunicaciones Espectro electromagnético Espectro radioeléctrico -- Mediciones Sistemas de amplificación multicanal |
dc.subject.keyword.spa.fl_str_mv |
Cognitive radio networks Wireless technologies Spectral opportunities Spectrum secondary User (SU) Primary User (PU) |
description |
Las redes de radio cognitiva (CRN) responden a la necesidad de optimizar los recursos existentes dentro de la red y fundamentalmente el uso del espectro. Esto se traduce como una oportunidad de mejorar el nivel de servicio para los usuarios de tecnologías inalámbricas, haciendo un uso oportuni sta del espectro disponible, y mejorando por ende, la eficiencia espectral. La CR proporciona un uso eficiente del espectro permitiendo al usuario secundario (SU) aprovechar de forma oportunista las porciones o canales del espectro licenciado que no están siendo utilizadas por el usuario primario (PU), las cuales se denominan oportunidades espectrales. Este libro de investigación pretende desarrollar un modelo que permita aprovechar dichas oportuni dades espectrales por parte de los SU, incluso a través de un enfoque de transmisión multicanal, siempre que el número de oportunidades espectrales y de SU lo permita, es decir, a SU con aplica ciones de tiempo real que requieran un mayor ancho de banda, el modelo les podría asignar varios canales de frecuencia para su transmisión. Sin embargo, lo anterior solo será posible si el número de SU que requieren el recurso espectral es menor que la cantidad de oportunidades espectrales, por lo que el modelo propuesto incorporará un criterio de Equidad (Fairness) para garantizar una asignación equitativa de las tales oportunidades a los SU. |
publishDate |
2017 |
dc.date.created.none.fl_str_mv |
2017-04 |
dc.date.accessioned.none.fl_str_mv |
2023-12-05T16:32:21Z |
dc.date.available.none.fl_str_mv |
2023-12-05T16:32:21Z |
dc.type.spa.fl_str_mv |
book |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/book |
dc.identifier.isbn.spa.fl_str_mv |
978-958-5434-26-4 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/33052 |
dc.identifier.editorial.spa.fl_str_mv |
Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico |
identifier_str_mv |
978-958-5434-26-4 Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico |
url |
http://hdl.handle.net/11349/33052 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
Espacios |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
dc.source.bibliographicCitation.spa.fl_str_mv |
Abramson, N. (1970). The Aloha System. EnInternational Conference on Computer. Ahmed, A., Boulahia, L. M. & Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16 (2), 776-811. Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. & Khan, S. U. (2016). Channel Assignment Algorithms in Cognitive Radio Networks: Taxonomy, Open Issues, and Challenges. IEEE Communications Surveys & Tutorials, 18 (1), 795-823. Akin, S. & Fidler, M. (2016). On the Transmission Rate Strategies in Cognitive Radios. IEEE Transactions on Wireless Communications, 15 (3), 2335-2350. Akyildiz, I. F., Lee, W.-Y. & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46 (4), 40-48. DOI http://doi.org/10.1109/MCOM.2008.4481339 Akyildiz, I. F., Won-Yeol, L., Vuran, M. C. & Mohanty, S. (2006). Next generation/ dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50 (13), 2127-2159. Anbunami, K. y Nedunchezhian, R. (2010). Soft Computing Applications for Database Technologies: Techniques and Issues. IGI Global. Awerbuch, B. & Mishra, A. (2015). Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - II. Recuperado de http://www.cs.jhu.edu/~cs647/ mac_lecture_2.pdf Cao, Y., Li, V. & Cao, Z. (2003). Scheduling delay-sensitive and best-effort traffics in wireless networks. Communications, 3, 2208-2212. Cárdenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. & StevensNavarro, E. (2016). On Spectrum Occupancy Measurements at 2. 4 GHz ISM Band for Cognitive Radio Applications. En International Conference on Electronics, Communications and Computers (pp. 25-31). Chen, Y., & Hee-Seok, O. (2016). A Survey of Measurement-based Spectrum Occupancy Modeling for Cognitive Radios. IEEE Communications Surveys & Tutorials, 18 (1), 848-859. Chih-Yung, C., Hung, L., Chang, C., Wang, T. y Wang, T. (2013). A Cognitive Radio MAC Protocol for Exploiting Bandwidth Utilization in Wireless Networks. En Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1774-1779). Chih-Yung, C., Li-Ling, H., Chao-Tsun, C., Tzu-Lin, W., & Tzu-Chia, W. (2013). A Cognitive Radio MAC protocol for exploiting bandwidth utilization in wireless networks. En Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th International (pp. 1774-1779). IEEE. Christian, I., Moh, S., Chung, I. & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50 (6), 114-121. Cohen, K. & Leshem, A. (2013). Distributed throughput maximization for multichannel ALOHA networks. En Computational Advances in Multi-Sensor Adaptive Processing (pp. 456-459). Elliot, R. (2002). A measure of fairness of service for scheduling algorithms in multiuser systems. Electrical and Computer Engineering, 3, 1583-1588. FCC. (2003). Docket No 03-322 Notice of Proposed Rule Making and Order. Communications. Recuperado de http://www.fcc.gov FCC (2005). ET Docket No. 03-108. Facilitating Opportunities for Flexible, Efficient, And Reliable Spectrum Use Employing Cognitive Radio Technologies. Recuperado de http://www.fcc.gov Federal Communications Commission. (2003). Notice of proposed rulemaking and order. Washington, D.C. Fonte, J. P. & Mora, F. E. (2008, jul.). Implementación de protocolos de capar de enlace de datos en los simuladores Omnet++ Y Ns-2. Quito, Ecuador: EPN. Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso DCMA. Bogotá, Colombia: Universidad Distrital Francisco José de Caldas. Gast, M. (2005). 802.11 Wireless Networks: The Definitive Guide. booksgooglecom booksgooglecom. Disponible en http://books.google.com/books?hl=en& lr=&id=9rHnRzzMHLIC&oi=fnd&pg=PR3&dq=802.11? +Wireless+Networks:+The+Definitive+Guide&ots=3xsOL8XbIs&s ig=06lHUxGYPwzlnC67jDsYVkK2_gA Georgios, E., Antonis, H., Ahmad, K., Neophytos, A. & Mohamed, A. A. (2011). Next-Generation Internet Architectures and Protocols. Next-Generation Internet: Architectures and Protocols. Ghorbanzadeh, M., Abdelhadi, A. & Clancy, C. (2015). A Utility ProportionalFairness Radio Resource Block Allocation in Cellular Networks. En2015 International Conference on Computing, Networking and Communications, Communication QoS and System Modeling Symposium (pp. 499-504). Google (2016, abr.). Youtube: Configuración, tasa de bits y resoluciones del codificador en vivo. Disponible en https://support.google.com/youtube/ answer/2853702?hl=es-419 Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23 (2), 201-220. Hernández, C. & Giral, D. (2015). Spectrum Mobility Analytical Tool for Cognitive Wireless Networks. International Journal of Applied Engineering Research, 10 (21), 42265-42274. Hernández, C., Pedraza, L. & Rodríguez-Colina, E. (2016). Fuzzy Feedback Algorithm for the Spectral Handoff in Cognitive Radio Networks. Sin publicar. Hernández, C., Pedraza, L. F. & Rodríguez-Colina, E. (2016). Fuzzy Feedback Algorithm for the Spectral Handoff in Cognitive Radio Networks. Revista Facultad de Ingeniería de La Universidad de Antioquia. Hernández, C., Salgado, C., López, H. & Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP J. Wirel. Commun. Netw, 2015 (1), 1-17. Hernández-Sampieri, R., Fernández-Collado, C. & Baptista, P. (2006). Metodología de la investigación. McGraw-Hill. Recuperado de http://www.univo.edu. sv:8081/tesis/020090/020090_Cap1.pdf Hoven, N., Tandra, R. & Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS. Berkeley: Univ. of California. Huang, P., Wang, C. & Xiao, L. (2015). RC-MAC: A receiver-centric MAC protocol for event-driven wireless sensor networks. IEEE Transactions on Computers, 64 (4), 1149-1161. IEEE. Standard Definitions and Concepts for Spectrum Management and Advanced Radio Technologies, Pub. L. No. P1900.1 (2007). IEEE COMSOC. (2008). IEEE Standard Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management. IEEE Std 1900.1-2008. Jain, K., Chiu, W., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation and shared computer system. Recuperado el 20 de abril de 2016, de http://www.cs.wustl.edu/~jain/papers/ftp/fairness.pdf. Jiménez, G. (2015). Ventajas y desventajas de las simulaciones. Recuperado el 12 de agosto de 2015, de http://www.virtual.unal.edu.co/cursos/sedes/manizales/4060015/Lecciones/Capitulo VI/ventajas.htm. Karmakar, N. C. (2010). Handbook of Smart Antennas for RFID Systems. Australia: Wiley. Khan, A. R., Bilal, S. M. & Othman, M. (2012). A performance comparison of open source network simulators for wireless networks. En International Conference on Control System, Computing and Engineering (pp. 34-38). Köksal, M. (2008). A survey of network simulators supporting wireless networks. Middle East Technical University. Ankara, Turquia: Middle East Technical University Konishi, Y., Masuyama, H., Kasahara, S. & Takahashi, Y. (2013). Performance analysis of dynamic spectrum handoff scheme with variable bandwidth demand of secondary users for cognitive radio networks. Wireless Networks, 19 (5), 607-617. Kumar, K., Prakash, A. & Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188. Laddomada, M., Mesiti, F., Mondin, M. & Daneshgaran, F. (2010). On the throughput performance of multirate IEEE 802.11 networks with variable-loaded stations: analysis, modeling, and a novel Proportionalfairness criterion. IEEE Transactions on Wireless Communications, 9(5), 1594-1607. Le, Y., Ma, L., Cheng, W., Cheng, X.& Chen, B. (2013). A Time Fairness Based MAC Algorithm for Throughput Maximization in 802.11 Networks. Computers, IEEE Transactions on, 99, 1. Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C. &Wolf, S. (2009). A Brief History of the Internet. ACM SIGCOMM Computer Communication Review, 39 (5), 22-31. DOI //doi.org/10.1145/1629607.1629613 Lertsinsrubtavee, A. & Malouch, N. (2016). Hybrid Spectrum Sharing Through Adaptive Spectrum Handoff and Selection. IEEE Transactions on Mobile Computing. Li, X., Song, Q., Wang, J., Tao, H. & Zhang, J. (2013). Improved idle channel utilization in distributed multi-channel cognitive radio systems. IEEE Vehicular Technology Conference. Liew, S. & Chang, J. (2008). ProportionalFairness in Multi-Channel Multi-Rate Wireless Networks–Part I: The Case of Deterministic Channels with Application to AP Association Problem in Large-Scale WLAN. IEEE Transactions on Wireless Communications, 7 (9), 3446-3456. Liu, Y.& Knightly, E. (2003). Opportunistic fair scheduling over multiple wireless channels. In IEEE INFOCOM 2003. EnTwenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428) (Vol. 2, pp. 1106-1115). Liu, Y. & Tewfik, A. (2014). Primary Traffic Characterization and Secondary Transmissions. IEEE Transactions on Wireless Communications, 13 (6), 3003-3016. López, D. A., García, N. Y. & Herrera, J. F. (2015). Desarrollo de un Modelo Predictivo para la Estimación del Comportamiento de Variables en una Infraestructura de Red. Información Tecnológica, 26 (5), 143-154. López, D. A., Trujillo, E. R. & Gualdron, O. E. (2015). Elementos Fundamentales que Componen la Radio Cognitiva y Asignación de Bandas Espectrales. Información Tecnológica, 26 (1), 23-40. Maldonado, D., Hugine, A., Rondeau, T. W. & Bostian, C. W. (2005). Cognitive radio applications to dynamic spectrum allocation: a discussion and an illustrative example. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005 (pp. 597-600). Marinho, J.& Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18 (2), 147-164. Microsoft. (2016). Experimento un rendimiento reducido cuando disfruto juegos de Xbox One en Xbox Live. Recuperado el 17 de abril de 2016, de http://support. xbox.com/es-CO/xbox-one/networking/slow-performance-solution Mishra, A., Banerjee, S. & Arbaugh, W. (2005). Weighted Coloring based Channel Assignment for WLANs. ACM SIGMOBILE Mobile Computing and Communications Review, 19-31. Mishra, A., Shrivastava, V., Agrawal, D., Banerjee, S. & Ganguly, S. (2006). Distributed channel management in uncoordinated wireless environments. International conference on Mobile computing and networking (p. 170). Mitola, J. (1999). Cognitive radio for flexible mobile multimedia communications. Mobile Networks and Applications, 22102, 3-10. Mitola, J. & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6 (4), 13-18. Neel, J. O. D. (2006). Analysis and Design of Cognitive Radio Networks and Distributed Radio Resource Management Algorithms. Blacksburg: Polytechnic Institute and State University. Netflix (2016). Netflix: Recomendaciones sobre la velocidad de conexión a Internet. Recuperado el 16 de abril de 2016, de https://help.netflix.com/es/node/306. Nolan, K., & Grosspietsch, J. (2005). Cognitive Radio WG. SDR Forum Technical Conference. OMNet++. (2015). User Manual OMNeT++. Recuperado el 19 de agosto de 2015, de https://omnetpp.org/doc/omnetpp/manual/usman.htm Ozger, M. & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20 (1), 157-160. Paez, F. J. & Ortiz, J. E. (2010). Simulación de enlaces Wi-Fi y UMTS con J-SIM para estimar el BER y PER. Vínculos, 7 (1), 17-24. Park, D. & Caire, G. (2008). Hard fairness versus Proportionalfairness in wireless communications: The multiple-cell case. IEEE International Symposium on Information Theory - Proceedings (pp. 2036–2040). Pedraza, L. F., Forero, F., & Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10 (19), 127-143. Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. & Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1a ed.). Bogotá, D.C.: Universidad Distrital Francisco José de Caldas. Pedraza, L. F., López, D. & Salcedo, O. (2011). Enrutamiento basado en el algoritmo de Dijkstra para una red de radio cognitiva. Tecnura, 15 (30), 93-100. Peng, X., Xiao, L., Zhong, X., Li, Y. & Zhou, S. (2013). Modeling and Analysis of An Opportunistic Transmission Scheme Based on Channel Quality Information in Multi-Channel Cognitive Networks. En IEEE, 297-302. Pingdom (2016). Pingdom Website Speed Test. Recuperado el 17 de abril de 2016, de https://tools.pingdom.com/. Qin, L. & Zhao, D. (2015). Channel Time Allocations and Handoff Management for Fair Throughput in Wireless Mesh Networks. IEEE Transactions on Vehicular Technology, 64 (1), 315-326. Qin, Y., Zheng, J., Wang, X., Luo, H., Yu, H., Tian, X. & Gan, X. (2013). Opportunistic Scheduling and Channel Allocation in MC-MR Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 1-17. Rahimian, N., Georghiades, C. N., Shakir, M. Z. & Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13 (1), 356-369. Rodríguez-Colina, E., Ramírez, P., Carrillo, A. & Ernesto, C. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. International Conference on Wireless and Optical Communications Networks (pp. 1-5). Santi, P. (2005). Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys, 37 (2), 164-194. Sclater, I. (2016). What Are the Bandwidth Specifications for Pandora, Spotify, iTunes Radio, and Beats Music? Recuperado el 15 de abril de 2016, de http:// www.bandwidthplace.com/what-are-the-bandwidth-specifications-for-pandoraspotify-itunes-radio-and-beats-music-article/. Seidel, S., Breinig, R. & Berezdivin, R. (2002). Adaptive Air Interface Waveform for Flexibility and Performance in Commercial Wireless Communications Systems. En World Wireless Research Forum. Sgora, A., Vergados, D. & Chatzimisios, P. (2009). IEEE 802.11s wireless Mesh networks: Challenges and Perspectives. En Mobile Lightweight Wireless Systems, 263-271. Simon, M. K. & Alouini, M.-S. (2008a). Digital Communications Over Fading Channels. IEEE Transactions on Information Theory, 54 (7), 3369-3370. Simon, M. K. & Alouini, M.-S. (2008b). Digital Communications Over Fading Channels (M.K. Simon and M.S. Alouini; 2005) [Book Review]. IEEE Transactions on Information Theory, 54 (7), 3369-3370. Sklar, B. (2001). Digital communications: fundamentals and applications. Los Ángeles Prentice Hall. Skype (2016). How much bandwidth does Skype need? Recuperado el 16 de abril de2016, de https://support.skype.com/en/faq/FA1417/how-much-bandwidthdoes-skype-need. Tan, X., Yin, C. & Ma, L. (2014). Positional Proportionalfairness scheduling based on spectrum aggregation in cognitive radio. En 2014 21st International Conference on Telecommunications, ICT 2014 (pp. 176-180). Tsiropoulos, G., Dobre, O., Ahmed, M., & Baddour, K. (2016). Radio Resource Allocation Techniques for Efficient Spectrum Access in Cognitive Radio Networks. IEEE Communications Surveys & Tutorials, 18 (1), 824-847. Universidad Politécnica de Cataluña. (2004). User Manual OPNET. Recuperado el 19 de agosto de 2015, de http://ansat.es/soporte/docs/fragmentacion/OPNET_Modeler_Manual.pdf. Wang, C. W. & Wang, L. C. (2009). Modeling and analysis for proactive-decision spectrum handoff in cognitive radio networks. IEEE International Conference on Communications (pp. 1-6). Wang, L.-C., Wang, C.-W. & Chang, C. J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11 (9), 1499-1513. Wayne, L. & Pan, Y. (2006). Resource allocation in next generation wireless networks. New York: Nova Publishers. Wu, D., Hou, Y. T., Zhu, W., Zhang, Y. Q. & Peha, J. M. (2001). StreamingStreaming video over the internet: Approaches and directions. IEEE Transactions on Circuits and Systems for Video Technology, 11 (3), 282-300. Wu, D., Hou, Y. T., Zhu, W., Zhang, Y. Q. & Peha, J. M. (2001). StreamingStreaming video over the internet: Approaches and directions. IEEE Transactions on Circuits and Systems for Video Technology, 11 (3), 282-300. Wu, Y. & Yang, Z. (2010). Multi-channel transmission strategy for dynamic spectrum access. Journal of Electronics, 27 (3), 345-352. DOI: http://doi.org/10.1007/ s11767-010-0337-3 Xian, X., Shi, W. & Huang, H. (2008). Comparison of OMNET++ and other simulator for WSN simulation. IEEE Conference on Industrial Electronics and Applications (pp. 1439–1443). Xiao, Y. & Hu, F. (2008). Cognitive radio networks. New York: CRC Press. Xu, Y., Li, Y., Zhao, Y., Zou, H. & Vasilakos, A. V. (2011). Selective sensing and transmission for multi-channel cognitive radio networks. 2011 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2011 (pp. 47-51). Yang, C., Lou, W., Fu, Y., Xie, S. & Yu, R. (2016). On throughput maximization in multichannel cognitive radio networks via generalized access strategy. IEEE Transactions on Communications, 64 (4), 1384-1398. Yue, W.& Matsumoto, Y. (2002). Output and Delay Process Analysis of Slotted CSMA/CD Multichannel Local Area Networks. Performance Analysis of Multichannel and Multi-Traffic on Wireless Communication Networks (pp. 149- 167). Yue, X., Wong, C. & Chan, S. (2010). A distributed channel assignment algorithm for uncoordinated WLANs. EnConsumer Communications and Networking Conference (CCNC) (pp. 1-5). Zhang, Y. & Liew, S. (2008). Proportionalfairness in multi-channel multi-rate wireless networks-part II: the case of time-varying channels with application to OFDM systems. IEEE Transactions on Wireless Communications, 7 (9), 3457-3467. |
bitstream.url.fl_str_mv |
http://repository.udistrital.edu.co/bitstream/11349/33052/1/1_modelo%20de%20asignacio%c3%8c_n.pdf http://repository.udistrital.edu.co/bitstream/11349/33052/2/license_rdf http://repository.udistrital.edu.co/bitstream/11349/33052/3/license.txt http://repository.udistrital.edu.co/bitstream/11349/33052/4/Captura.PNG http://repository.udistrital.edu.co/bitstream/11349/33052/5/1_modelo%20de%20asignacio%c3%8c_n.pdf.jpg |
bitstream.checksum.fl_str_mv |
be0e403ebb0bbe866ea8d36012425967 4460e5956bc1d1639be9ae6146a50347 997daf6c648c962d566d7b082dac908d 8348ac74fdb5102c39ee2e2c8b7b036e abadad6700004119a98316ee8f4f44ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Distrital - RIUD |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1803712688427106304 |
spelling |
2023-12-05T16:32:21Z2023-12-05T16:32:21Z2017-04978-958-5434-26-4http://hdl.handle.net/11349/33052Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo CientíficoLas redes de radio cognitiva (CRN) responden a la necesidad de optimizar los recursos existentes dentro de la red y fundamentalmente el uso del espectro. Esto se traduce como una oportunidad de mejorar el nivel de servicio para los usuarios de tecnologías inalámbricas, haciendo un uso oportuni sta del espectro disponible, y mejorando por ende, la eficiencia espectral. La CR proporciona un uso eficiente del espectro permitiendo al usuario secundario (SU) aprovechar de forma oportunista las porciones o canales del espectro licenciado que no están siendo utilizadas por el usuario primario (PU), las cuales se denominan oportunidades espectrales. Este libro de investigación pretende desarrollar un modelo que permita aprovechar dichas oportuni dades espectrales por parte de los SU, incluso a través de un enfoque de transmisión multicanal, siempre que el número de oportunidades espectrales y de SU lo permita, es decir, a SU con aplica ciones de tiempo real que requieran un mayor ancho de banda, el modelo les podría asignar varios canales de frecuencia para su transmisión. Sin embargo, lo anterior solo será posible si el número de SU que requieren el recurso espectral es menor que la cantidad de oportunidades espectrales, por lo que el modelo propuesto incorporará un criterio de Equidad (Fairness) para garantizar una asignación equitativa de las tales oportunidades a los SU.Cognitive radio networks (CRN) respond to the need to optimize existing resources within the network and fundamentally the use of the spectrum. This translates as an opportunity to improve the level of service for users of wireless technologies, making opportunistic use of the available spectrum, and therefore improving spectral efficiency. CR provides a use efficient spectrum allowing the secondary user (SU) to opportunistically take advantage of the portions or channels of the licensed spectrum that are not being used by the primary user (PU), which are called spectral opportunities. This research book aims to develop a model that allows EDs to take advantage of these spectral opportunities, including through a multi-channel transmission approach, As long as the number of spectral and SU opportunities allows it, that is, to SUs with real-time applications that require greater bandwidth, the model could assign several frequency channels for transmission. However, the above will only be possible if the number of SU requiring the spectral resource is less than the number of spectral opportunities, so that the proposed model will incorporate a Fairness criterion to guarantee an allocation equitable provision of such opportunities to SUs.BogotápdfspaEspaciosAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Redes de radio cognitivaTecnologías inalámbricasOportunidades espectralesEspectroUsuario secundario (SU)Usuario primario (PU)TelecomunicacionesEspectro electromagnéticoEspectro radioeléctrico -- MedicionesSistemas de amplificación multicanalCognitive radio networksWireless technologiesSpectral opportunitiesSpectrum secondaryUser (SU)Primary User (PU)Modelo de asignación multicanal con equidad para la movilidad espectral en redes de radio cognitivaMulti-channel allocation model with equity for spectral mobility in cognitive radio networksbookinfo:eu-repo/semantics/bookhttp://purl.org/coar/resource_type/c_2f33Abramson, N. (1970). The Aloha System. EnInternational Conference on Computer.Ahmed, A., Boulahia, L. M. & Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16 (2), 776-811.Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. & Khan, S. U. (2016). Channel Assignment Algorithms in Cognitive Radio Networks: Taxonomy, Open Issues, and Challenges. IEEE Communications Surveys & Tutorials, 18 (1), 795-823.Akin, S. & Fidler, M. (2016). On the Transmission Rate Strategies in Cognitive Radios. IEEE Transactions on Wireless Communications, 15 (3), 2335-2350.Akyildiz, I. F., Lee, W.-Y. & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836.Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46 (4), 40-48. DOI http://doi.org/10.1109/MCOM.2008.4481339Akyildiz, I. F., Won-Yeol, L., Vuran, M. C. & Mohanty, S. (2006). Next generation/ dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50 (13), 2127-2159.Anbunami, K. y Nedunchezhian, R. (2010). Soft Computing Applications for Database Technologies: Techniques and Issues. IGI Global.Awerbuch, B. & Mishra, A. (2015). Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks - II. Recuperado de http://www.cs.jhu.edu/~cs647/ mac_lecture_2.pdfCao, Y., Li, V. & Cao, Z. (2003). Scheduling delay-sensitive and best-effort traffics in wireless networks. Communications, 3, 2208-2212.Cárdenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. & StevensNavarro, E. (2016). On Spectrum Occupancy Measurements at 2. 4 GHz ISM Band for Cognitive Radio Applications. En International Conference on Electronics, Communications and Computers (pp. 25-31).Chen, Y., & Hee-Seok, O. (2016). A Survey of Measurement-based Spectrum Occupancy Modeling for Cognitive Radios. IEEE Communications Surveys & Tutorials, 18 (1), 848-859.Chih-Yung, C., Hung, L., Chang, C., Wang, T. y Wang, T. (2013). A Cognitive Radio MAC Protocol for Exploiting Bandwidth Utilization in Wireless Networks. En Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1774-1779).Chih-Yung, C., Li-Ling, H., Chao-Tsun, C., Tzu-Lin, W., & Tzu-Chia, W. (2013). A Cognitive Radio MAC protocol for exploiting bandwidth utilization in wireless networks. En Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th International (pp. 1774-1779). IEEE.Christian, I., Moh, S., Chung, I. & Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50 (6), 114-121.Cohen, K. & Leshem, A. (2013). Distributed throughput maximization for multichannel ALOHA networks. En Computational Advances in Multi-Sensor Adaptive Processing (pp. 456-459).Elliot, R. (2002). A measure of fairness of service for scheduling algorithms in multiuser systems. Electrical and Computer Engineering, 3, 1583-1588.FCC. (2003). Docket No 03-322 Notice of Proposed Rule Making and Order. Communications. Recuperado de http://www.fcc.govFCC (2005). ET Docket No. 03-108. Facilitating Opportunities for Flexible, Efficient, And Reliable Spectrum Use Employing Cognitive Radio Technologies. Recuperado de http://www.fcc.govFederal Communications Commission. (2003). Notice of proposed rulemaking and order. Washington, D.C.Fonte, J. P. & Mora, F. E. (2008, jul.). Implementación de protocolos de capar de enlace de datos en los simuladores Omnet++ Y Ns-2. Quito, Ecuador: EPN.Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso DCMA. Bogotá, Colombia: Universidad Distrital Francisco José de Caldas.Gast, M. (2005). 802.11 Wireless Networks: The Definitive Guide. booksgooglecom booksgooglecom. Disponible en http://books.google.com/books?hl=en& lr=&id=9rHnRzzMHLIC&oi=fnd&pg=PR3&dq=802.11? +Wireless+Networks:+The+Definitive+Guide&ots=3xsOL8XbIs&s ig=06lHUxGYPwzlnC67jDsYVkK2_gAGeorgios, E., Antonis, H., Ahmad, K., Neophytos, A. & Mohamed, A. A. (2011). Next-Generation Internet Architectures and Protocols. Next-Generation Internet: Architectures and Protocols.Ghorbanzadeh, M., Abdelhadi, A. & Clancy, C. (2015). A Utility ProportionalFairness Radio Resource Block Allocation in Cellular Networks. En2015 International Conference on Computing, Networking and Communications, Communication QoS and System Modeling Symposium (pp. 499-504).Google (2016, abr.). Youtube: Configuración, tasa de bits y resoluciones del codificador en vivo. Disponible en https://support.google.com/youtube/ answer/2853702?hl=es-419Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23 (2), 201-220.Hernández, C. & Giral, D. (2015). Spectrum Mobility Analytical Tool for Cognitive Wireless Networks. International Journal of Applied Engineering Research, 10 (21), 42265-42274.Hernández, C., Pedraza, L. & Rodríguez-Colina, E. (2016). Fuzzy Feedback Algorithm for the Spectral Handoff in Cognitive Radio Networks. Sin publicar.Hernández, C., Pedraza, L. F. & Rodríguez-Colina, E. (2016). Fuzzy Feedback Algorithm for the Spectral Handoff in Cognitive Radio Networks. Revista Facultad de Ingeniería de La Universidad de Antioquia.Hernández, C., Salgado, C., López, H. & Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP J. Wirel. Commun. Netw, 2015 (1), 1-17.Hernández-Sampieri, R., Fernández-Collado, C. & Baptista, P. (2006). Metodología de la investigación. McGraw-Hill. Recuperado de http://www.univo.edu. sv:8081/tesis/020090/020090_Cap1.pdfHoven, N., Tandra, R. & Sahai, A. (2005). Some fundamental limits on cognitive radio. Wireless Foundations EECS. Berkeley: Univ. of California.Huang, P., Wang, C. & Xiao, L. (2015). RC-MAC: A receiver-centric MAC protocol for event-driven wireless sensor networks. IEEE Transactions on Computers, 64 (4), 1149-1161.IEEE. Standard Definitions and Concepts for Spectrum Management and Advanced Radio Technologies, Pub. L. No. P1900.1 (2007).IEEE COMSOC. (2008). IEEE Standard Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management. IEEE Std 1900.1-2008.Jain, K., Chiu, W., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation and shared computer system. Recuperado el 20 de abril de 2016, de http://www.cs.wustl.edu/~jain/papers/ftp/fairness.pdf.Jiménez, G. (2015). Ventajas y desventajas de las simulaciones. Recuperado el 12 de agosto de 2015, de http://www.virtual.unal.edu.co/cursos/sedes/manizales/4060015/Lecciones/Capitulo VI/ventajas.htm.Karmakar, N. C. (2010). Handbook of Smart Antennas for RFID Systems. Australia: Wiley.Khan, A. R., Bilal, S. M. & Othman, M. (2012). A performance comparison of open source network simulators for wireless networks. En International Conference on Control System, Computing and Engineering (pp. 34-38).Köksal, M. (2008). A survey of network simulators supporting wireless networks. Middle East Technical University. Ankara, Turquia: Middle East Technical UniversityKonishi, Y., Masuyama, H., Kasahara, S. & Takahashi, Y. (2013). Performance analysis of dynamic spectrum handoff scheme with variable bandwidth demand of secondary users for cognitive radio networks. Wireless Networks, 19 (5), 607-617.Kumar, K., Prakash, A. & Tripathi, R. (2016). Spectrum handoff in cognitive radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188.Laddomada, M., Mesiti, F., Mondin, M. & Daneshgaran, F. (2010). On the throughput performance of multirate IEEE 802.11 networks with variable-loaded stations: analysis, modeling, and a novel Proportionalfairness criterion. IEEE Transactions on Wireless Communications, 9(5), 1594-1607.Le, Y., Ma, L., Cheng, W., Cheng, X.& Chen, B. (2013). A Time Fairness Based MAC Algorithm for Throughput Maximization in 802.11 Networks. Computers, IEEE Transactions on, 99, 1.Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C. &Wolf, S. (2009). A Brief History of the Internet. ACM SIGCOMM Computer Communication Review, 39 (5), 22-31. DOI //doi.org/10.1145/1629607.1629613Lertsinsrubtavee, A. & Malouch, N. (2016). Hybrid Spectrum Sharing Through Adaptive Spectrum Handoff and Selection. IEEE Transactions on Mobile Computing.Li, X., Song, Q., Wang, J., Tao, H. & Zhang, J. (2013). Improved idle channel utilization in distributed multi-channel cognitive radio systems. IEEE Vehicular Technology Conference.Liew, S. & Chang, J. (2008). ProportionalFairness in Multi-Channel Multi-Rate Wireless Networks–Part I: The Case of Deterministic Channels with Application to AP Association Problem in Large-Scale WLAN. IEEE Transactions on Wireless Communications, 7 (9), 3446-3456.Liu, Y.& Knightly, E. (2003). Opportunistic fair scheduling over multiple wireless channels. In IEEE INFOCOM 2003. EnTwenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428) (Vol. 2, pp. 1106-1115).Liu, Y. & Tewfik, A. (2014). Primary Traffic Characterization and Secondary Transmissions. IEEE Transactions on Wireless Communications, 13 (6), 3003-3016.López, D. A., García, N. Y. & Herrera, J. F. (2015). Desarrollo de un Modelo Predictivo para la Estimación del Comportamiento de Variables en una Infraestructura de Red. Información Tecnológica, 26 (5), 143-154.López, D. A., Trujillo, E. R. & Gualdron, O. E. (2015). Elementos Fundamentales que Componen la Radio Cognitiva y Asignación de Bandas Espectrales. Información Tecnológica, 26 (1), 23-40.Maldonado, D., Hugine, A., Rondeau, T. W. & Bostian, C. W. (2005). Cognitive radio applications to dynamic spectrum allocation: a discussion and an illustrative example. First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005 (pp. 597-600).Marinho, J.& Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18 (2), 147-164.Microsoft. (2016). Experimento un rendimiento reducido cuando disfruto juegos de Xbox One en Xbox Live. Recuperado el 17 de abril de 2016, de http://support. xbox.com/es-CO/xbox-one/networking/slow-performance-solutionMishra, A., Banerjee, S. & Arbaugh, W. (2005). Weighted Coloring based Channel Assignment for WLANs. ACM SIGMOBILE Mobile Computing and Communications Review, 19-31.Mishra, A., Shrivastava, V., Agrawal, D., Banerjee, S. & Ganguly, S. (2006). Distributed channel management in uncoordinated wireless environments. International conference on Mobile computing and networking (p. 170).Mitola, J. (1999). Cognitive radio for flexible mobile multimedia communications. Mobile Networks and Applications, 22102, 3-10.Mitola, J. & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6 (4), 13-18.Neel, J. O. D. (2006). Analysis and Design of Cognitive Radio Networks and Distributed Radio Resource Management Algorithms. Blacksburg: Polytechnic Institute and State University.Netflix (2016). Netflix: Recomendaciones sobre la velocidad de conexión a Internet. Recuperado el 16 de abril de 2016, de https://help.netflix.com/es/node/306.Nolan, K., & Grosspietsch, J. (2005). Cognitive Radio WG. SDR Forum Technical Conference.OMNet++. (2015). User Manual OMNeT++. Recuperado el 19 de agosto de 2015, de https://omnetpp.org/doc/omnetpp/manual/usman.htmOzger, M. & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20 (1), 157-160.Paez, F. J. & Ortiz, J. E. (2010). Simulación de enlaces Wi-Fi y UMTS con J-SIM para estimar el BER y PER. Vínculos, 7 (1), 17-24.Park, D. & Caire, G. (2008). Hard fairness versus Proportionalfairness in wireless communications: The multiple-cell case. IEEE International Symposium on Information Theory - Proceedings (pp. 2036–2040).Pedraza, L. F., Forero, F., & Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10 (19), 127-143.Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. & Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1a ed.). Bogotá, D.C.: Universidad Distrital Francisco José de Caldas.Pedraza, L. F., López, D. & Salcedo, O. (2011). Enrutamiento basado en el algoritmo de Dijkstra para una red de radio cognitiva. Tecnura, 15 (30), 93-100.Peng, X., Xiao, L., Zhong, X., Li, Y. & Zhou, S. (2013). Modeling and Analysis of An Opportunistic Transmission Scheme Based on Channel Quality Information in Multi-Channel Cognitive Networks. En IEEE, 297-302.Pingdom (2016). Pingdom Website Speed Test. Recuperado el 17 de abril de 2016, de https://tools.pingdom.com/.Qin, L. & Zhao, D. (2015). Channel Time Allocations and Handoff Management for Fair Throughput in Wireless Mesh Networks. IEEE Transactions on Vehicular Technology, 64 (1), 315-326.Qin, Y., Zheng, J., Wang, X., Luo, H., Yu, H., Tian, X. & Gan, X. (2013). Opportunistic Scheduling and Channel Allocation in MC-MR Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 1-17.Rahimian, N., Georghiades, C. N., Shakir, M. Z. & Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspectives. IEEE Transactions on Wireless Communications, 13 (1), 356-369.Rodríguez-Colina, E., Ramírez, P., Carrillo, A. & Ernesto, C. (2011). Multiple attribute dynamic spectrum decision making for cognitive radio networks. International Conference on Wireless and Optical Communications Networks (pp. 1-5).Santi, P. (2005). Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys, 37 (2), 164-194.Sclater, I. (2016). What Are the Bandwidth Specifications for Pandora, Spotify, iTunes Radio, and Beats Music? Recuperado el 15 de abril de 2016, de http:// www.bandwidthplace.com/what-are-the-bandwidth-specifications-for-pandoraspotify-itunes-radio-and-beats-music-article/.Seidel, S., Breinig, R. & Berezdivin, R. (2002). Adaptive Air Interface Waveform for Flexibility and Performance in Commercial Wireless Communications Systems. En World Wireless Research Forum.Sgora, A., Vergados, D. & Chatzimisios, P. (2009). IEEE 802.11s wireless Mesh networks: Challenges and Perspectives. En Mobile Lightweight Wireless Systems, 263-271.Simon, M. K. & Alouini, M.-S. (2008a). Digital Communications Over Fading Channels. IEEE Transactions on Information Theory, 54 (7), 3369-3370.Simon, M. K. & Alouini, M.-S. (2008b). Digital Communications Over Fading Channels (M.K. Simon and M.S. Alouini; 2005) [Book Review]. IEEE Transactions on Information Theory, 54 (7), 3369-3370.Sklar, B. (2001). Digital communications: fundamentals and applications. Los Ángeles Prentice Hall.Skype (2016). How much bandwidth does Skype need? Recuperado el 16 de abril de2016, de https://support.skype.com/en/faq/FA1417/how-much-bandwidthdoes-skype-need.Tan, X., Yin, C. & Ma, L. (2014). Positional Proportionalfairness scheduling based on spectrum aggregation in cognitive radio. En 2014 21st International Conference on Telecommunications, ICT 2014 (pp. 176-180).Tsiropoulos, G., Dobre, O., Ahmed, M., & Baddour, K. (2016). Radio Resource Allocation Techniques for Efficient Spectrum Access in Cognitive Radio Networks. IEEE Communications Surveys & Tutorials, 18 (1), 824-847.Universidad Politécnica de Cataluña. (2004). User Manual OPNET. Recuperado el 19 de agosto de 2015, de http://ansat.es/soporte/docs/fragmentacion/OPNET_Modeler_Manual.pdf.Wang, C. W. & Wang, L. C. (2009). Modeling and analysis for proactive-decision spectrum handoff in cognitive radio networks. IEEE International Conference on Communications (pp. 1-6).Wang, L.-C., Wang, C.-W. & Chang, C. J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11 (9), 1499-1513.Wayne, L. & Pan, Y. (2006). Resource allocation in next generation wireless networks. New York: Nova Publishers.Wu, D., Hou, Y. T., Zhu, W., Zhang, Y. Q. & Peha, J. M. (2001). StreamingStreaming video over the internet: Approaches and directions. IEEE Transactions on Circuits and Systems for Video Technology, 11 (3), 282-300.Wu, D., Hou, Y. T., Zhu, W., Zhang, Y. Q. & Peha, J. M. (2001). StreamingStreaming video over the internet: Approaches and directions. IEEE Transactions on Circuits and Systems for Video Technology, 11 (3), 282-300.Wu, Y. & Yang, Z. (2010). Multi-channel transmission strategy for dynamic spectrum access. Journal of Electronics, 27 (3), 345-352. DOI: http://doi.org/10.1007/ s11767-010-0337-3Xian, X., Shi, W. & Huang, H. (2008). Comparison of OMNET++ and other simulator for WSN simulation. IEEE Conference on Industrial Electronics and Applications (pp. 1439–1443).Xiao, Y. & Hu, F. (2008). Cognitive radio networks. New York: CRC Press.Xu, Y., Li, Y., Zhao, Y., Zou, H. & Vasilakos, A. V. (2011). Selective sensing and transmission for multi-channel cognitive radio networks. 2011 IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2011 (pp. 47-51).Yang, C., Lou, W., Fu, Y., Xie, S. & Yu, R. (2016). On throughput maximization in multichannel cognitive radio networks via generalized access strategy. IEEE Transactions on Communications, 64 (4), 1384-1398.Yue, W.& Matsumoto, Y. (2002). Output and Delay Process Analysis of Slotted CSMA/CD Multichannel Local Area Networks. Performance Analysis of Multichannel and Multi-Traffic on Wireless Communication Networks (pp. 149- 167).Yue, X., Wong, C. & Chan, S. (2010). A distributed channel assignment algorithm for uncoordinated WLANs. EnConsumer Communications and Networking Conference (CCNC) (pp. 1-5).Zhang, Y. & Liew, S. (2008). Proportionalfairness in multi-channel multi-rate wireless networks-part II: the case of time-varying channels with application to OFDM systems. IEEE Transactions on Wireless Communications, 7 (9), 3457-3467.Hernández Suárez, César AugustoMárquez Ramos, Hans RaúlPedraza Martínez, Luis FernandoORIGINAL1_modelo de asignacioÌ_n.pdf1_modelo de asignacioÌ_n.pdfapplication/pdf7821906http://repository.udistrital.edu.co/bitstream/11349/33052/1/1_modelo%20de%20asignacio%c3%8c_n.pdfbe0e403ebb0bbe866ea8d36012425967MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repository.udistrital.edu.co/bitstream/11349/33052/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-87167http://repository.udistrital.edu.co/bitstream/11349/33052/3/license.txt997daf6c648c962d566d7b082dac908dMD53open accessTHUMBNAILCaptura.PNGCaptura.PNGimage/png277055http://repository.udistrital.edu.co/bitstream/11349/33052/4/Captura.PNG8348ac74fdb5102c39ee2e2c8b7b036eMD54open access1_modelo de asignacioÌ_n.pdf.jpg1_modelo de asignacioÌ_n.pdf.jpgIM Thumbnailimage/jpeg1908http://repository.udistrital.edu.co/bitstream/11349/33052/5/1_modelo%20de%20asignacio%c3%8c_n.pdf.jpgabadad6700004119a98316ee8f4f44adMD55open access11349/33052oai:repository.udistrital.edu.co:11349/330522023-12-13 01:08:38.663open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |