Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas
Dentro de los servicios de telecomunicaciones que prestan diferentes compañías del sector hacen uso del espectro electromagnético, para ello deben usar bandas del espectro electromagnético licenciadas y por lo general cada país mediante subastas permiten que estas compañías usen espacios de frecuenc...
- Autores:
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/29005
- Acceso en línea:
- http://hdl.handle.net/11349/29005
- Palabra clave:
- Espectro radioeléctrico
Emulación de usuario Primario
Minería de datos
Radio cognitiva
Radio definido por software
Ingeniería en Telecomunicaciones - Tesis y disertaciones académicas
Emuladores (Programa para computador)
Redes de radio cognitivas
Espectro radioeléctrico
Minería de datos
Electromagnetic radio
Primary user emulation
Data mining
Software defined radio
Cognitive radio
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UDISTRITA2_6044fcba4aa8b83279c37a17300f3118 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/29005 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas |
dc.title.titleenglish.spa.fl_str_mv |
Design and implementation of a malicious primary user emulation attack detection system using a support vector machine in cognitive networks |
title |
Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas |
spellingShingle |
Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas Espectro radioeléctrico Emulación de usuario Primario Minería de datos Radio cognitiva Radio definido por software Ingeniería en Telecomunicaciones - Tesis y disertaciones académicas Emuladores (Programa para computador) Redes de radio cognitivas Espectro radioeléctrico Minería de datos Electromagnetic radio Primary user emulation Data mining Software defined radio Cognitive radio |
title_short |
Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas |
title_full |
Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas |
title_fullStr |
Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas |
title_full_unstemmed |
Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas |
title_sort |
Diseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivas |
dc.contributor.advisor.spa.fl_str_mv |
Pedraza Martínez, Luis Fernando Cadena Muñoz, Ernesto |
dc.subject.spa.fl_str_mv |
Espectro radioeléctrico Emulación de usuario Primario Minería de datos Radio cognitiva Radio definido por software |
topic |
Espectro radioeléctrico Emulación de usuario Primario Minería de datos Radio cognitiva Radio definido por software Ingeniería en Telecomunicaciones - Tesis y disertaciones académicas Emuladores (Programa para computador) Redes de radio cognitivas Espectro radioeléctrico Minería de datos Electromagnetic radio Primary user emulation Data mining Software defined radio Cognitive radio |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería en Telecomunicaciones - Tesis y disertaciones académicas Emuladores (Programa para computador) Redes de radio cognitivas Espectro radioeléctrico Minería de datos |
dc.subject.keyword.spa.fl_str_mv |
Electromagnetic radio Primary user emulation Data mining Software defined radio Cognitive radio |
description |
Dentro de los servicios de telecomunicaciones que prestan diferentes compañías del sector hacen uso del espectro electromagnético, para ello deben usar bandas del espectro electromagnético licenciadas y por lo general cada país mediante subastas permiten que estas compañías usen espacios de frecuencia para prestar un servicio, sin embargo, el optimizar el espectro juega un papel muy importante y más aún cuando se identifica que hay espacios que están siendo usados de manera ilegal y afectan la operación del servicio[1]. Con el fin de identificar estos ataques se hizo la implementación de una SVM (máquina de soporte vectorial) esta hace uso de un hiperplano de separación óptimo donde se realiza la agrupación de datos en dos grupos, el primero representa datos que hacen parte de un ataque malicioso y el otro grupo aquellos que no son un ataque, es así que al definir un margen máximo nos permitirá identificar si la muestra de datos capturadas del espectro corresponde a un ataque o no. Cabe mencionar que se debió realizar un tratamiento previo al dataset creado con los niveles de energía que se toman y con el uso de la entropía, esta nos ayuda a identificar la cantidad de información promedio que contienen las mediciones realizadas. Al lograr la implementación de la SVM se debió entrenar la misma, es decir, en primera instancia se le entrega a la SVM datos que representan un ataque y otro grupo de datos que no son ataque, estos datos son tomados directamente de las mediciones de espectro sobre las frecuencias de trabajo en diferentes posiciones planteadas, es así con el hiperplano fijar las zonas donde puede caer un posible ataque, es así que al realizar el proceso en tiempo real indicará después de procesar y hacer los respectivos cálculos con toda la información sí hay un ataque malicioso presente en el espectro. |
publishDate |
2021 |
dc.date.created.spa.fl_str_mv |
2021-06-24 |
dc.date.accessioned.none.fl_str_mv |
2022-05-06T17:23:32Z |
dc.date.available.none.fl_str_mv |
2022-05-06T17:23:32Z |
dc.type.degree.spa.fl_str_mv |
Monografía |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/29005 |
url |
http://hdl.handle.net/11349/29005 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
http://repository.udistrital.edu.co/bitstream/11349/29005/8/license.txt http://repository.udistrital.edu.co/bitstream/11349/29005/2/BarbosaCortesDavidAlejandro_Brice%c3%b1oMurilloYesidFabian2021.pdf http://repository.udistrital.edu.co/bitstream/11349/29005/4/Licencia%20de%20uso%20y%20publicaci%c3%b3n.pdf http://repository.udistrital.edu.co/bitstream/11349/29005/3/license_rdf http://repository.udistrital.edu.co/bitstream/11349/29005/9/BarbosaCortesDavidAlejandro_Brice%c3%b1oMurilloYesidFabian2021.pdf.jpg http://repository.udistrital.edu.co/bitstream/11349/29005/10/Licencia%20de%20uso%20y%20publicaci%c3%b3n.pdf.jpg |
bitstream.checksum.fl_str_mv |
997daf6c648c962d566d7b082dac908d 9ec65f01c944da819de5afab10a6716d c14c0611f6cc395ab3f667d0ae7aab79 217700a34da79ed616c2feb68d4c5e06 13182890102b0840e7239d87c2e2ca06 27b6661a951d4a57d4025e936e21306a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Distrital - RIUD |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1814111754995630080 |
spelling |
Pedraza Martínez, Luis FernandoCadena Muñoz, ErnestoBarbosa Cortés, David AlejandroBriceño Murillo, Yesid Fabián2022-05-06T17:23:32Z2022-05-06T17:23:32Z2021-06-24http://hdl.handle.net/11349/29005Dentro de los servicios de telecomunicaciones que prestan diferentes compañías del sector hacen uso del espectro electromagnético, para ello deben usar bandas del espectro electromagnético licenciadas y por lo general cada país mediante subastas permiten que estas compañías usen espacios de frecuencia para prestar un servicio, sin embargo, el optimizar el espectro juega un papel muy importante y más aún cuando se identifica que hay espacios que están siendo usados de manera ilegal y afectan la operación del servicio[1]. Con el fin de identificar estos ataques se hizo la implementación de una SVM (máquina de soporte vectorial) esta hace uso de un hiperplano de separación óptimo donde se realiza la agrupación de datos en dos grupos, el primero representa datos que hacen parte de un ataque malicioso y el otro grupo aquellos que no son un ataque, es así que al definir un margen máximo nos permitirá identificar si la muestra de datos capturadas del espectro corresponde a un ataque o no. Cabe mencionar que se debió realizar un tratamiento previo al dataset creado con los niveles de energía que se toman y con el uso de la entropía, esta nos ayuda a identificar la cantidad de información promedio que contienen las mediciones realizadas. Al lograr la implementación de la SVM se debió entrenar la misma, es decir, en primera instancia se le entrega a la SVM datos que representan un ataque y otro grupo de datos que no son ataque, estos datos son tomados directamente de las mediciones de espectro sobre las frecuencias de trabajo en diferentes posiciones planteadas, es así con el hiperplano fijar las zonas donde puede caer un posible ataque, es así que al realizar el proceso en tiempo real indicará después de procesar y hacer los respectivos cálculos con toda la información sí hay un ataque malicioso presente en el espectro.Within the telecommunication services provided by different companies in the sector, they make use of the electromagnetic spectrum, for which they must use licensed electromagnetic spectrum bands and generally each country, through auctions, allows these companies to use frequency spaces to provide a service, however, the optimization of the spectrum plays a very important role, especially when it is identified that there are spaces that are being used illegally and affect service performance[1]. However, optimizing the spectrum plays a very important role and even more so when it is identified that there are spaces that are being used illegally and affect the operation of the service[1]. In order to identify these attacks, an SVM (support vector machine) was implemented, which makes use of an optimal separation hyperplane where the data is grouped into two groups, the first one representing The first group represents data that are part of a malicious attack and the other group represents data that are not an attack. group those that are not an attack, so defining a maximum margin will allow us to identify whether the data sample captured is a malicious attack or not. The first group represents data that is part of a malicious attack and the other group represents data that is not an attack. It is worth mentioning It is worth mentioning that the dataset created with the energy levels that are taken and with the use of the and with the use of entropy, which helps us to identify the amount of average information contained in the measurements taken. information contained in the measurements taken.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Espectro radioeléctricoEmulación de usuario PrimarioMinería de datosRadio cognitivaRadio definido por softwareIngeniería en Telecomunicaciones - Tesis y disertaciones académicasEmuladores (Programa para computador)Redes de radio cognitivasEspectro radioeléctricoMinería de datosElectromagnetic radioPrimary user emulationData miningSoftware defined radioCognitive radioDiseño e implementación de un sistema de detección del ataque de emulación de usuario primario malicioso utilizando una máquina de soporte vectorial en redes cognitivasDesign and implementation of a malicious primary user emulation attack detection system using a support vector machine in cognitive networksMonografíainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain; charset=utf-87167http://repository.udistrital.edu.co/bitstream/11349/29005/8/license.txt997daf6c648c962d566d7b082dac908dMD58open accessORIGINALBarbosaCortesDavidAlejandro_BriceñoMurilloYesidFabian2021.pdfBarbosaCortesDavidAlejandro_BriceñoMurilloYesidFabian2021.pdftrabajo de Gradoapplication/pdf2617913http://repository.udistrital.edu.co/bitstream/11349/29005/2/BarbosaCortesDavidAlejandro_Brice%c3%b1oMurilloYesidFabian2021.pdf9ec65f01c944da819de5afab10a6716dMD52open accessLicencia de uso y publicación.pdfLicencia de uso y publicación.pdfapplication/pdf319233http://repository.udistrital.edu.co/bitstream/11349/29005/4/Licencia%20de%20uso%20y%20publicaci%c3%b3n.pdfc14c0611f6cc395ab3f667d0ae7aab79MD54metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repository.udistrital.edu.co/bitstream/11349/29005/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53open accessTHUMBNAILBarbosaCortesDavidAlejandro_BriceñoMurilloYesidFabian2021.pdf.jpgBarbosaCortesDavidAlejandro_BriceñoMurilloYesidFabian2021.pdf.jpgIM Thumbnailimage/jpeg6973http://repository.udistrital.edu.co/bitstream/11349/29005/9/BarbosaCortesDavidAlejandro_Brice%c3%b1oMurilloYesidFabian2021.pdf.jpg13182890102b0840e7239d87c2e2ca06MD59open accessLicencia de uso y publicación.pdf.jpgLicencia de uso y publicación.pdf.jpgIM Thumbnailimage/jpeg13229http://repository.udistrital.edu.co/bitstream/11349/29005/10/Licencia%20de%20uso%20y%20publicaci%c3%b3n.pdf.jpg27b6661a951d4a57d4025e936e21306aMD510open access11349/29005oai:repository.udistrital.edu.co:11349/290052023-06-13 12:51:28.585open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |