Aproximación de las soluciones de ecuaciones diferenciales de primer orden por medio de métodos numéricos
Este trabajo explora la efectividad de dos métodos numéricos; Euler y Runge-Kutta, empleados para resolver problemas de valor inicial. En primer lugar, resolvemos analíticamente las ecuaciones diferenciales para luego aplicar ambos métodos numéricos para aproximar sus soluciones. Al comparar las apr...
- Autores:
-
Misnaza Leguizamo, Alan Steven
López León, Camilo Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/93319
- Acceso en línea:
- http://hdl.handle.net/11349/93319
- Palabra clave:
- Ecuaciones diferenciales
Caos
Métodos numéricos
Sensibilidad
Matemáticas -- Tesis y disertaciones académicas
Matemáticas
Ecuaciones diferenciales
Teoría del caos
Problemas de valor inicial
Differential equations
Chaos
Numerical methods
Sensitivity
- Rights
- License
- Abierto (Texto Completo)
Summary: | Este trabajo explora la efectividad de dos métodos numéricos; Euler y Runge-Kutta, empleados para resolver problemas de valor inicial. En primer lugar, resolvemos analíticamente las ecuaciones diferenciales para luego aplicar ambos métodos numéricos para aproximar sus soluciones. Al comparar las aproximaciones con las soluciones analíticas, vemos que el método de Runge-Kutta es más efectivo para el segundo problema de valor inicial debido a su menor error. Además, deducimos que, cuanto menor sea el tamaño del intervalo donde se calcula la aproximación, más confiable será esta a la solución analítica del problema de valor inicial. Posteriormente, aplicamos el mismo procedimiento a un tercer problema de valor inicial "simple". Los resultados mostraron que la afirmación anterior no se cumplía, revelando una gran sensibilidad a las condiciones iniciales que llevó a un comportamiento caótico. Este hallazgo se alinea con la teoría del caos, esto significa que pequeñas variaciones pueden desencadenar resultados drásticamente diferentes. Finalmente, este estudio muestra que los métodos numéricos no siempre son efectivos para todos los problemas de valores iniciales, especialmente el método de Rungue-Kutta para soluciones que presentan discontinuidades, singularidades o alta oscilación, manifestado comportamientos caóticos. Este estudio subraya la importancia de comprender las limitaciones de los métodos numéricos en la predicción de soluciones de problemas de valores iniciales y abre la puerta a futuros trabajos en la mejora de estas técnicas y en la comprensión del caos en sistemas dinámicos. |
---|