Algunas propiedades de las matrices de Toeplitz complejas
Este trabajo de grado tiene como referencia el capítulo cuatro del artículo “On some properties of Toeplitz matrices ”, en el cual se hace un énfasis a las matrices de Toeplitz con entradas en los números complejos. El objetivo del trabajo es hacer un estudio a fondo de los resultados dados en el ar...
- Autores:
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/28226
- Acceso en línea:
- http://hdl.handle.net/11349/28226
- Palabra clave:
- Matriz de Toeplitz
Operador fiel
Matriz involutiva
Matriz circulante
Transformada discreta de Fourier
Matemáticas - Tesis y disertaciones académicas
Álgebras lineales
Matrices (Matemáticas)
Análisis de Fourier
Funciones ortogonales
Toeplitz matrices
Faithful operator
Involutory matrices
Circulant matrices
Discrete Fourier tranform
- Rights
- License
- CC0 1.0 Universal
Summary: | Este trabajo de grado tiene como referencia el capítulo cuatro del artículo “On some properties of Toeplitz matrices ”, en el cual se hace un énfasis a las matrices de Toeplitz con entradas en los números complejos. El objetivo del trabajo es hacer un estudio a fondo de los resultados dados en el artículo mencionado, mostrando así la demostración paso a paso de cada uno de estos, ejemplificando los resultados principales y dando algunas aplicaciones de estas matrices. Principalmente se hace un estudio de las normas de Frobenius y Operador, definidas sobre el sub-álgebra de las matrices de Toeplitz. Uno de los resultados principales da una relación entre el conjunto M_n(C) y su respectiva sub-álgebra de matrices de Toeplitz, esta relación puede dar pie a la posible extensión de las aplicaciones que se muestran al final del trabajo. El teorema de Lin tiene gran importancia ya que este es necesario para demostrar el teorema mencionado anteriormente; otro resultado de suma importancia es el teorema 5.5 ya que permite generalizarse al ámbito de las álgebras C^{*}. Por último, uno de los objetivos en el trabajo es el de relacionar las matrices circulares con la Transformada Discreta de Fourier (DFT), esta relación se da en el capítulo cinco junto con un estudio de las principales propiedades de la DFT. |
---|