Clasificador de escenas acústicas basado en redes neuronales artificiales y análisis de componentes principales
La clasificación acústica de escenas ha venido cobrando importancia en los últimos años. Las aplicaciones que tiene son interesantes y adicionalmente, representa un reto implementar una herramienta computacional que permita detectar adecuadamente sonidos complejos y diversos, como los presentados en...
- Autores:
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/23160
- Acceso en línea:
- http://hdl.handle.net/11349/23160
- Palabra clave:
- Redes neuronales convolucionales
Clasificación de escenas
Redes Feed-Forward
Análisis de componentes principales
Segmentos
Ingeniería Electrónica - Tesis y disertaciones académicas
Redes neurales (Informática)
Redes neuronales convolucionales
Complejidad computacional
Convolutional neural networks
Scene classification
Feed-Forward networks
Principal component analysis
Segments
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
Summary: | La clasificación acústica de escenas ha venido cobrando importancia en los últimos años. Las aplicaciones que tiene son interesantes y adicionalmente, representa un reto implementar una herramienta computacional que permita detectar adecuadamente sonidos complejos y diversos, como los presentados en entornos reales. En este trabajo se implementan redes neuronales convolucionales y feed-forward, entrenadas con características individuales como Coeficientes Cepstrales de Frecuencia en escala Mel (MFCC), tonos gamma y Transformada Discreta de Fourier (DFT), extraídas a los sonidos en ventanas de 100 ms con solapamiento de 50%, para luego formar segmentos de 1 y 10 segundos. De igual forma las redes neuronales se entrenan con las combinaciones de características (DFT-Gamma, DFT-MFCC, Gamma-MFCC, DFT-Gamma-MFCC). Posteriormente se realiza reducción del número de coeficientes de entrada implementando PCA, verificando el impacto de esta reducción en el rendimiento y el tiempo de entrenamiento de diferentes arquitecturas de red neuronal. En ambos casos se utiliza validación cruzada con un 80% de los datos para entrenamiento y 20% para validación, para el desarrollo se utiliza la base de datos DCASE2018. |
---|