Modelo de decisión espectral colaborativo para redes de radio cognitiva
La decisión espectral es un aspecto clave para mejorar el desempeño en las redes de radio cognitiva descentralizadas. Los usuarios secundarios deben tomar decisiones inteligentes en función de la variación del espectro y de las acciones adoptadas por otros usuarios secundarios. A partir de esta diná...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/32259
- Acceso en línea:
- http://hdl.handle.net/11349/32259
- Palabra clave:
- Decisión espectral
Redes de radio
Redes de radio cognitiva
Simulación
Algoritmos colaborativo
Redes de radio cognitiva
Espectro radioeléctrico
Spectral decision
Radio networks
Cognitive radio networks
Simulation
Collaborative algorithms
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UDISTRITA2_1f52c2d6f6971e30e07299231452a497 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/32259 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo de decisión espectral colaborativo para redes de radio cognitiva |
dc.title.titleenglish.spa.fl_str_mv |
Collaborative spectral decision model for cognitive radio networks |
title |
Modelo de decisión espectral colaborativo para redes de radio cognitiva |
spellingShingle |
Modelo de decisión espectral colaborativo para redes de radio cognitiva Decisión espectral Redes de radio Redes de radio cognitiva Simulación Algoritmos colaborativo Redes de radio cognitiva Espectro radioeléctrico Spectral decision Radio networks Cognitive radio networks Simulation Collaborative algorithms |
title_short |
Modelo de decisión espectral colaborativo para redes de radio cognitiva |
title_full |
Modelo de decisión espectral colaborativo para redes de radio cognitiva |
title_fullStr |
Modelo de decisión espectral colaborativo para redes de radio cognitiva |
title_full_unstemmed |
Modelo de decisión espectral colaborativo para redes de radio cognitiva |
title_sort |
Modelo de decisión espectral colaborativo para redes de radio cognitiva |
dc.contributor.orcid.spa.fl_str_mv |
López Sarmiento, Danilo Alfonso [0000-0002-6148-3099] Giral Ramírez, Diego Armando [0000-0001-9983-4555] |
dc.subject.spa.fl_str_mv |
Decisión espectral Redes de radio Redes de radio cognitiva Simulación Algoritmos colaborativo |
topic |
Decisión espectral Redes de radio Redes de radio cognitiva Simulación Algoritmos colaborativo Redes de radio cognitiva Espectro radioeléctrico Spectral decision Radio networks Cognitive radio networks Simulation Collaborative algorithms |
dc.subject.lemb.spa.fl_str_mv |
Redes de radio cognitiva Espectro radioeléctrico |
dc.subject.keyword.spa.fl_str_mv |
Spectral decision Radio networks Cognitive radio networks Simulation Collaborative algorithms |
description |
La decisión espectral es un aspecto clave para mejorar el desempeño en las redes de radio cognitiva descentralizadas. Los usuarios secundarios deben tomar decisiones inteligentes en función de la variación del espectro y de las acciones adoptadas por otros usuarios secundarios. A partir de esta dinámica, la probabilidad de que dos o más usuarios secundarios elijan el mismo canal es alta, especialmente cuando el número de usuarios secundarios es mayor que el número de canales disponibles, debido a la externalidad negativa de la red; cuantos más usuarios secundarios seleccionen el mismo canal, menor será la utilidad que cada usuario secundario pueda obtener y el número de interferencias por el acceso simultáneo será mayor. Por esto, para modelar la red bajo parámetros de tráfico realistas, es necesario tener en cuenta la colaboración entre usuarios secundarios. Este libro de investigación presenta una propuesta para mejorar el proceso de toma de decisiones en una red de radio cognitiva descentralizada, y así dotar a los nodos con la capacidad de aprender del entorno, proponiendo estrategias que les permitan a los usuarios secundarios intercambiar información de forma cooperativa o competitiva. |
publishDate |
2020 |
dc.date.created.none.fl_str_mv |
2020-11 |
dc.date.accessioned.none.fl_str_mv |
2023-09-21T17:16:30Z |
dc.date.available.none.fl_str_mv |
2023-09-21T17:16:30Z |
dc.type.spa.fl_str_mv |
book |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/book |
dc.identifier.isbn.spa.fl_str_mv |
978-958-787-245-3 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/32259 |
dc.identifier.editorial.spa.fl_str_mv |
Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico |
identifier_str_mv |
978-958-787-245-3 Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico |
url |
http://hdl.handle.net/11349/32259 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
Espacios |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
dc.source.bibliographicCitation.spa.fl_str_mv |
3GPP. (2011). IEEE Approved Draft Standard For Information Technology. Local and metropolitan area networks. Specific requirements. Part 22: Cognitive wireless ran medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands IEEE computer society (vol. 2015). https://standards.ieee.org/standard/802_22-2019.html Abass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. En 2017 51st Annual Conference on Information Sciences and Systems (pp. 1-5). IEEE. http://doi.org/10.1109/ CISS.2017.7926128 Abbas, N., Nasser, Y. y Ahmad, k. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, (1), 1-20. http://doi.org/10.1186/ s13638-015-0381-7 Abdulshahed, A. M., Longstaff, A. P. y Fletcher, S. (2015). The application of Anfis prediction models for thermal error compensation on CNC machine tools. Applied Soft Computing Journal, 27, 158-168. http://doi.org/10.1016/j. asoc.2014.11.01 Abonyi, J., Andersen, H., Nagy, L. y Szeifert, F. (1999). Inverse fuzzy-process-model based direct adaptive control. Mathematics and Computers in Simulation, 51(1-2), 119-132. http://doi.org/10.1016/s0378-4754(99)00142-1 Abramson, N. (1981). Teoría de la información y codificación (5.a ed.). Paraninfo. https:// eva.udelar.edu.uy/pluginfile.php/84635/mod_resource/content/0/Teoria_de_ la_Informacion_y_codificacion-Norman_Abramson_ebook-spanish_.pdf Adeel, A., Larijani, H. y Ahmadinia, A. (2014, 13-16 de mayo). Performance analysis of artificial neural network-based learning schemes for cognitive radio systems in LTE-UL [presentación en conferencia]. 2014 28th International Conference on Advanced Information Networking and Applications, Victoria, Estados Unidos. http://doi.org/10.1109/WAINA.2014.116 Ahmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys & Tutorials, 16(2), 776-811. http://doi.org/10.1109/ SURV.2013.082713.00141 Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. y khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. http://doi. org/10.1109/COMST.2014.2363082 Akin, S. y Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350. http://doi. org/10.1109/TWC.2015.2503272 Akter, L., Natarajan, B. y Scoglio, C. (2008, 3-7 de agosto). Modeling and forecasting secondary user activity in cognitive radio networks [presentación en conferencia]. 17th International Conference on Computer Communications and Networks, St. Thomas, Islas Vírgenes, Estados Unidos. http://doi.org/10.1109/ICCCN.2008.ECP.50 Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). NeXt generation/ dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159. http://doi.org/10.1016/j.comnet.2006.05.001 Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40-48. http://doi.org/10.1109/MCOM.2008.4481339 Akyildiz, I. F., Lee, W.-Y. y Chowdhury, k. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836. http://doi.org/10.1016/j.adhoc.2009.01.001 Akyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory technical report. Georgia Institute of Technology. Al-Amidie, M., Al-Asadi, A., Micheas, A. C. e Islam, N. E. (2019). Spectrum sensing based on Bayesian generalised likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305-311. http://doi. org/10.1049/iet-com.2018.5276 Ali, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials, 19(2), 1277-1304. http://doi.org/10.1109/COMST.2016.2631080 Alias, D. M. y Ragesh, G. k. (2016, 23-25 de marzo). Cognitive radio networks: A survey [presentación en conferencia]. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India. http://doi.org/10.1109/WiSPNET.2016.7566489 Almasaeid, H. M. y kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. En 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (pp. 1-10). IEEE. http://doi.org/10.1109/DYSPAN.2010.5457862 Alnwaimi, G., Arshad, k. y Moessner, k. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934. http://doi.org/10.1109/ LCOMM.2011.062911.110248 Alsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En 2009 Proceedings of 18th Internatonal Conference on Computer Communications and Networks (pp. 1-6). IEEE. http://doi. org/10.1109/ICCCN.2009.5235261 Amir, M., El-keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. http://doi.org/10.1109/TIT.2011.2119770 Amjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, 98, 109-122. http://doi.org/10.1016/j.comnet.2016.01.016 Azarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2), second quarter, 338-354. http://doi.org/10.1109/SURV.2011.021111.00064 Baran, P. (1964). On distributed communications networks. IEEE Transactions on Communications Systems, 12(1), 1-9. http://doi.org/10.1109/TCOM.1964.1088883 Bhowmik, M. y Malathi, P. (2019). Spectrum sensing in cognitive radio using actor-critic neural network with krill herd-whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. http://doi.org/10.1007/s11277-018-6115-5 Bkassiny, M., Li, Y. y Jayaweera, S. k. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3), 11361159. http://doi.org/10.1109/SURV.2012.100412.00017 Bolstad, W. M. (2007). Introduction to Bayesian statistics (2.a ed.). John Wiley & Sons. Brik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. En 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 611-614). IEEE. http://doi.org/10.1109/ DYSPAN.2005.1542680 Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani, D. (2018). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10). http://doi. org/10.1177/1550147717738192 Bütün, I., Talay, A. Ç., Altilar, D. T., khalid, M. y Sankar, R. (2010, 21-23 de abril). Impact of mobility prediction on the performance of cognitive radio networks [presentación en simposio]. 2010 Wireless Telecommunications Symposium (WTS), Tampa, Estados Unidos. http://doi.org/10.1109/WTS.2010.5479659 Büyüközkan, G., kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. http://doi.org/10.1080/03081070310001633581 Büyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy Topsis based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. https://doi.org/10.1016/j. eswa.2011.08.061 Byun, S. S., Balasingham, I. y Liang, X. (2008, 21-24 de septiembre). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency [presentación en conferencia]. 2008 IEEE 68th Vehicular Technology Conference, Calgary, Canadá. http://doi.org/10.1109/VETECF.2008.299 Cao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining. En 2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (pp. 475-486). IEEE. http://doi.org/10.1109/ SAHCN.2005.1557100 Cardenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. y Stevens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. En 2016 International Conference on Electronics, Communications and Computers (pp. 25-31). IEEE. http://doi.org/10.1109/CONIELECOMP.2016.7438547 Chang, C.-C. y Lin, C.-J. (2013). Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), artículo 27. http://doi.org/10.1145/1961189.1961199 Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. http://doi.org/10.1016/03772217(95)00300-2 Chen, D., Zhang, Q. y Jia, W. (2008, 15-17 de mayo). Aggregation aware spectrum assignment in cognitive ad-hoc networks [presentación en conferencia]. 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapur, Singapur. http://doi.org/10.1109/CROWNCOM.2008.4562548 Chen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A clusterbased cognitive radio network. En 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). IEEE. http://doi. org/10.1109/DYSPAN.2007.29 Chen, Y. y Oh, H.-S. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859. http://doi.org/10.1109/COMST.2014.2364316 Cheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En 2011 IEEE 13th International Conference on Communication Technology (pp. 161-164). IEEE. http://doi.org/10.1109/ICCT.2011.6157854 Cho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330. https://doi. org/10.1016/j.eswa.2013.03.038 Chou, C.-T., Shankar, S., kim, H. y Shin, k. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576588. http://doi.org/10.1109/JSAC.2007.070408 Choudhary, D. y Shankar, R. (2012). An Steep-fuzzy AHP-Topsis framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521. https://doi.org/10.1016/j.energy.2012.03.010 Christian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114-121. http://doi. org/10.1109/MCOM.2012.6211495 Cisco. (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021 [white paper]. https://www.ramonmillan.com/documentos/bibliografia/ VisualNetworkingIndexGlobalMobileDataTrafficForecastUpdate2016_Cisco.pdf Cortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [tesis de maestría, Universidad Nacional de Colombia]. BDigital. Cruz-Pol, S., Van Zee, L., kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018). Spectrum management and the impact of RFI on science sensors. En 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (pp. 52-56). IEEE. http://doi.org/10.1109/MICRORAD.2018.843072 Csurgai-Horváth, L. y Bitó, J. (2011). Primary and secondary user activity models for cognitive wireless network. En Proceedings of the 11th International Conference on Telecommunications (pp. 189-194). IEEE. https://ieeexplore.ieee.org/document/5969948 Dadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. http://doi. org/10.1109/TVT.2015.2440412 Dadios, E. P. (ed.). (2012). Fuzzy logic: Algorithms, techniques and implementations. IntechOpen. Darak, S. J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized cognitive radio networks. Digital Signal Processing, 37(1), 13-23. http://doi.org/10.1016/j.dsp.2014.12.001 Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dynamic spectrum learning and access policy for multi-standard multi-user cognitive radio networks. En 2014 11th International Symposium on Wireless Communications Systems (ISWCS) (pp. 271-275). Institute of Electrical and Electronics Engineers. http://doi.org/10.1109/ISWCS.2014.693336 Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2017). Decision making policy for RF energy harvesting enabled cognitive radios in decentralized wireless networks. Digital Signal Processing, 60, 33-45. http://doi.org/10.1016/j.dsp.2016.08.014 Del Ser, J., Matinmikko, M., Gil-Lopez, S. y Mustonen, M. (2010). A novel harmony search based spectrum allocation technique for cognitive radio networks. En 2007 7th International Symposium on Wireless Communication Systems (pp. 233-237). IEEE. http://doi.org/10.1109/ISWCS.2010.5624341 Delgado, M. y Rodríguez, B. (2016). Opportunities for a more efficient use of the spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610616. http://doi.org/10.1109/TLA.2016.743720 Deng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13), artículo e3726. http://doi.org/10.1002/dac.3726 Dhamodharavadhani, S. (2015). A survey on clustering based routing protocols in mobile ad hoc networks. En 2015 International Conference on Soft-Computing and Networks Security (ICSNS) (pp. 1-6). IEEE. http://doi.org/10.1109/ ICSNS.2015.7292426 Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Crosslayer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. http://doi. org/10.1109/TVT.2010.2045403 Do, C. T., Tran, N. H., Hong, C. S., Lee, S., Lee, J.-J. y Lee, W. (2013). A lightweight algorithm for probability-based spectrum decision scheme in multiple channels cognitive radio networks. IEEE Communications Letters, 17(3), 509-512. http:// doi.org/10.1109/LCOMM.2013.012313.122589 Du, k.-L. y Swamy, M. N. S. (2013). Neural networks and statistical learning. Springer. Duan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. Advances in Electrical and Computer Engineering, 11(3), 11-16. http://doi.org/10.4316/aece.2011.03002 Dunn, J. C. (1973). A fuzzy relative of the Isodata process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32-57. http://doi. org/10.1080/01969727308546046 Fauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380). IEEE. http://doi.org/10.1109/AMS.2007.7 Fauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380). IEEE. http://doi.org/10.1109/AMS.2007.7 Federal Communications Commission (FCC). (2003a). Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies. https://www.fcc.gov/document/facilitating-opportunities-flexible-efficient-and-reliable-spectrum-1 Federal Communications Commission (FCC). (2003b). Notice of proposed rulemaking and order. https://web.cs.ucdavis.edu/~liu/289I/Material/FCC-03-322A1.pdf Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley. Flórez-López, R. y Fernández Fernández, J. M. (2008). Las redes neuronales artificiales: fundamentos teóricos y aplicaciones prácticas. Netbiblo. Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso CDMA [tesis de maestría, Universidad Distrital Francisco José de Caldas]. Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM. Fudenberg, D. y Tirole, J. (1991). Game theory. MIT Press. https://books.google. com.co/books?id=pFPHkwXro3QC Gallardo-Medina, J. R., Pineda-Rico, U. y Stevens-Navarro, E. (2009). Vikor method for vertical handoff decision in beyond 3G wireless networks. En 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE. http://doi.org/10.1109/ICEEE.2009.539332 Gavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15(4), 1761-1777. http://doi.org/10.1109/SURV.2013.030713.00113 Gers, F. A. y Schmidhuber, E. (2001). LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333-1340. http://doi.org/10.1109/72.963769 Giupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En Proceedings of the Third International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi. org/10.1109/CROWNCOM.2008.4562535 Goldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99. http://doi.org/10.1023/A:1022602019183 Goswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. En 2017 International Conference on Inventive Communication and Computational Technologies (pp. 410-414). IEEE. http://doi. org/10.1109/ICICCT.2017.797523 Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Springer. http://doi.org/10.1007/978-3-642-24797-2 Graves, A., Mohamed, A.-R. y Hinton, G. (2013). Speech recognition with deep recurrent neural networks. En 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings (pp. 6645-6649). IEEE. http://doi. org/10.1109/ICASSP.2013.6638947 Graves, A. y Schmidhuber, J. (2005). Framewise phoneme classification with bidirec tional LSTM and other neural network architectures. Neural Networks, 18(5-6), 602-610. http://doi.org/10.1016/j.neunet.2005.06.042 Green, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from groups: Delphi and prediction markets compared. SSRN Electronic Journal, 8, 17- 20. http://doi.org/10.2139/ssrn.1153124 Han, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier y Morgan Kauffman. Hasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimiza tion for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. http://doi.org/10.1109/JPROC.2014.2306255 Haykin, S. (1998). Neural networks: A comprehensive foundation (2.a ed.). Prentice Hall. He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technol ogy, 59(4), 1578-1592. http://doi.org/10.1109/TVT.2010.204 Hernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of spectrum mobility models in cognitive radio networks. International Journal of Applied Engineering Research, 10(21), 42.189-42.196. Hernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technol ogy, 9(12), 1212-1215. https://publications.waset.org/10002921/hybrid-algo rithm-for-frequency-channel-selection-in-wi-fi-networks Hernández, C., Giral, D. y Santa, F. (2015). MCDM spectrum handover models for cognitive wireless networks. World Academy of Science, Engineering and Technolo gy, 9(10), 679-682. https://publications.waset.org/10002749/mcdm-spectrum handover-models-for-cognitive-wireless-networks Hernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of predic tion models for forecasting spectral opportunities. International Journal of Engineering and Technology, 9(5), 3775-3782. http://doi.org/10.21817/ijet/2017/ v9i5/170905055 Hernández, C., Páez, I. y Giral, D. (2015). Modelo AHP-Vikor para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39. http://dx.doi.org/10.14483/ udistrital.jour.tecnura.2015.3.a02 Hernández, C., Páez, I. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva. Editorial UD. Hernández, C., Pedraza, L. F., Páez, I. y Rodríguez-Colina, E. (2015). Análisis de la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186. http://dx.doi.org/10.4067/S0718-07642015000600018 Hernández, C., Pedraza, L. F. y Martínez, F. H. (2016). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. http://www.scielo. org.co/scielo.php?pid=S0123-921X2016000200006&script=sci_abstract&tlng=es Hernández, C., Pedraza, L. F. y Rodríguez-Colina, E. (2016). Fuzzy feedback algo rithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia, (81), 47-62. http://doi.org/10.17533/ udea.redin.n81a05 Hernández, C., Salcedo, O. y Pedraza, L. F. (2009). An Arima model for forecasting Wi Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69. http://www. scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-5609200900020001 Hernández, C., Salgado, C., López, H. y Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, 2015(1), artículo 216. http:// doi.org/10.1186/s13638-015-0445-8 Hernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Inge niería de la Universidad de Antioquia, (67), 52-62. http://www.scielo.org.co/scielo. php?script=sci_arttext&pid=S0120-62302013000200005 Hernández Sampieri, R., Fernández-Collado, C. y Baptista Lucio, P. (2006). Metodo logía de la investigación (4.a ed.). McGraw-H Hernandez-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe Chalke, M. (2012). Cruam-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En 2012 IEEE Latin-American Conference on Communications. IEEE. http://doi.org/10.1109/LATINCOM.2012.6505997 Hochreiter, S. y Schmidhuber, J. (1997). Long short-term memory. Neural Computa tion, 9(8), 1735-1780. http://doi.org/10.1162/neco.1997.9.8.17 Hoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive ra dio. Wireless Foundations EECS. https://omidi.iut.ac.ir/SDR/2008/Projects/ Ataei-Game_Theory_Cognitive%20Radios/References/Some%20Fundamen tal%20Limits%20on%20Cognitive%20Radio.pdf Hsieh, W. W. (2009). Machine learning methods in the environmental sciences: Neural net works and kernels. Cambridge University Pres Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer. Iftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian game-based user behavior analysis for spectrum mobility in cognitive radios. Phy sical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002 Institute of Electrical and Electronics Engineers. (2008). IEEE standard definitions and concepts for dynamic spectrum access: Terminology relating to emerging wireless networks, system functionality, and spectrum management (IEEE Standard 1900.1- 2008). https://standards.ieee.org/standard/1900_1-2008.htm Issariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communi cations Magazine, 47(7), 57-63. http://doi.org/10.1109/MCOM.2009.5183 Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. http://doi.org/10.1016/j.patrec.2009.09.011 Jang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. http://doi. org/10.1109/21.256541 Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and real time reconfigurable antenna designs for autonomous, self-learning future cognitive radios. https://digitalrepository.unm.edu/ece_rpts/36/ Ji, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access. Dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. http://doi.org/10.1109/MCOM.2007.358854 Jiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Com munications, 13(4), 2176-2188. http://doi.org/10.1109/TWC.2014.02201 Joda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary Type-I HARQ process. IEEE Transactions on Com munications, 63(11), 4037-4049. http://doi.org/10.1109/TCOMM.201 Kalkan, S. (2018). Special topics in deep learning. http://kovan.ceng.metu.edu.tr/~sinan/ DL/ Kanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportu nistic auto-rate media access protocol for ad hoc networks. En First International Conference on Broadband Networks (pp. 600-610). IEEE. https://ieeexplore.ieee. org/document/1363848?section=abstract Kasbekar, G. S. y Sarkar, S. (2010). Spectrum auction framework for access alloca tion in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6), 1841-1854. http://doi.org/10.1109/TNET.2010.2051453 Kaur, A., Kaur, A. y Sharma, S. (2018). PSO based multiobjective optimization for parameter adaptation in CR based IoTs. En 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT). IEEE. http://doi. org/10.1109/CIACT.2018.8480298 Kaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy Vikor & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527. https://doi.org/10.1016/j.energy.2010.02.051 Keller, J. M., Liu, D. y Fogel, D. B. (2016). Fundamentals of computational intelligence: Neural networks, fuzzy systems, and evolutionary computation. IEEE y Wiley. http:// doi.org/10.1002/9781119214403 Kennedy, E. P., Condon, M. y Dowling, J. (2003). Torque-ripple minimisation in swit ched reluctance motors using a neuro-fuzzy control strategy. En Proceedings of the Iasted International Conference on Modelling and Simulation (pp. 106-109). Iasted. Kibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three step vertical handoff scheme for 4G/B3G networks. En Globecom ’05. IEEE Global Telecommunications Conference (vol. 5, pp. 2752-2756). IEEE. http://doi. org/10.1109/GLOCOM.2005.157826 Kim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545. http://doi.org/10.1109/TMC.2007.70751 Kim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distri buted channel assignment in cognitive multi-radio mesh networks. En 2010 IFIP wireless days. IEEE. http://doi.org/10.1109/WD.2010.5657733 Kondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network se tup without a common control channel. En 2008 IEEE Military Communications Conference. IEEE. http://doi.org/10.1109/MILCOM.2008.4753398 Kongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high stand-by energy consumption of ad-hoc Wi-Fi. En 2017 IEEE Global Humanitarian Tech nology Conference. IEEE. http://doi.org/10.1109/GHTC.2017.8239229 Krishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. En 2005 IEEE Military Communications Conference (vol. 1, pp. 455-460). IEEE. http://doi.org/10.1109/MILCOM.2005.1605725 Krogstad, H. E. (2012). TMA 4180. Optimeringsteori karush-kuhn-tucker theorem. https://folk.ntnu.no/hek/Optimering2012/kkttheoremv2012.pdf Kumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive ra dio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188. http://doi.org/10.1016/j.jnca.2015.10.008 Kwok, T.-Y. y Yeung, D.-Y. (1997). Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neu ral Networks, 8(3), 630-645. http://doi.org/10.1109/72.572102 Lahby, M., Leghris, C. y Abdellah, A. (2011). A hybrid approach for network se lection in heterogeneous multi-access environments. En 2011 4th IFIP Interna tional Conference on New Technologies, Mobility and Security. IEEE. http://doi. org/10.1109/NTMS.2011.5720658 Lee, W.-Y. y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cogni tive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845- 3857. http://doi.org/10.1109/T-WC.2008.070391 Lee, W.-Y. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive ra dio networks. IEEE Transactions on Mobile Computing, 10(2), 161-174. http://doi. org/10.1109/TMC.2010.147 Lertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adap tive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793. http://doi.org/10.1109/TMC.2016.2517619 Li, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investiga tion for cognitive radio systems. En IEEE Wireless Communications and Network ing Conference (pp. 894-899). IEEE. http://doi.org/10.1109/WCNC.20 Li, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters in CR using autonomously search algorithm. En 2016 IEEE 13th International Conference on Signal Processing (pp. 1146-1151). IEEE. http://doi.org/10.1109/ ICSP.2016.7878007 Liu, Y. y Tewfik, A. (2014). Primary traffic characterization and secondary transmis sions. IEEE Transactions on Wireless Communications, 13(6), 3003-3016. http:// doi.org/10.1109/TWC.2014.042914.130861 López Sarmiento, D. A. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [tesis doctoral, Universidad Dis trital Francisco José de Caldas]. Repositorio de tesis doctoral del Doctorado en Ingeniería de la Universidad Distrital Francisco José de Caldas. https://docto radoingenieria.udistrital.edu.co/index.php/es/inicio/documentos/repositorio de-tesis-doctoral/item/488-implementacion-de-un-modelo-predictor-para-la toma-de-decisiones-en-redes-inalambricas-de-radio-cognitiva López Sarmiento, D. A., Rivas, E. y Gualdrón, O. E. (2015). Elementos funda mentales que componen la radio cognitiva y asignación de bandas espectra les. Información Tecnológica, 26(1), 23-40. http://dx.doi.org/10.4067/S0718- 07642015000100004 Ma, L., Shen, C.-C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks. En 2007 2nd IEEE International Sympo sium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547-558). IEEE. http://doi.org/10.1109/DYSPAN.2007.78 Marinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication proto cols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164. http://doi.org/10.1007/s11276-011-0392-1 Márquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in cognitive radio networks using naive Bayes. Contemporary Engineering Sciences, 10(12), 593-605. http://doi.org/10.12988/ces.2017.7758 Masonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 15(3), 1088- 1107. http://doi.org/10.1109/SURV.2012.111412.0016 Masters, T. (1993). Practical neural networks recipes in C++. Morgan Kaufmann. Matinmikko, M., Del Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic ba sed framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. http://doi. org/10.1109/JSAC.2013.131117 Matinmikko, M., Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intel ligent wireless communication system. VTT Technical Research Centre of Finland Meerschaert, M. M. (2013). Mathematical modeling (4.a ed.). Elsevier. http://doi.org/ https://doi.org/10.1016/C2010-0-66940-9 Mehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ran king approach for vertical mobility in next generation hybrid networks. En IV International Congress on Ultra Modern Telecommunications and Control Systems 2012 (pp. 262-267). IEEE. http://doi.org/10.1109/ICUMT.2012.6459676 Melián-Gutiérrez, L., Zazo, S., Blanco-Murillo, J. L., Pérez-Álvarez, I., García Rodríguez, A. y Pérez-Díaz, B. (2013). HF spectrum activity prediction model based on HMM for cognitive radio applications. Physical Communication, 9, 199- 211. http://doi.org/10.1016/j.phycom.2012.09.004 Mir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En 2011 IEEE Consumer Communications and Networking Conference (pp. 658-663). IEEE. http:// doi.org/10.1109/CCNC.2011.5766563 Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. http://doi.org/10.1109/52.903173 Mishra, V., Tong, L. C., Chan, S. y Kumar, A. (2012). Energy aware spectrum de cision framework for cognitive radio networks. En 2012 International Sympo sium on Electronic System Design (ISED 2012) (pp. 309-313). IEEE. http://doi. org/10.1109/ISED.2012.65 Mitola III, J. (2000). Cognitive radio: An integrated agent architecture for software defined ra dio [tesis de doctorado, Royal Institute of Technology]. http://www.diva-portal. org/smash/get/diva2:8730/FULLTEXT01.pdf Neshat, M., Adeli, A., Masoumi, A. y Sargozae, M. (2011). A comparative study on Anfis and fuzzy expert system models for concrete mix design. International Journal of Computer Science Issues, 8(3), 196-210. https://www.researchgate.net/ publication/260979471_Comparative_Study_on_Anfis_and_Fuzzy_Expert_ System_Models_for_Concrete_Mix_Design Nisan, N., Roughgarden, T., Tardos, É. y Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge University Press. Ormond, O., Murphy, J. y Muntean, G.-M. (2006). Utility-based intelligent net work selection in beyond 3G systems. En 2006 IEEE International Conference on Communications (vol. 4, pp. 1831-1836). IEEE. http://doi.org/10.1109/ ICC.2006.254986 Oyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Jour nal of Network and Computer Applications, 97, 140-156. http://doi.org/https:// doi.org/10.1016/j.jnca.2017.08.016 Ozger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cog nitive radio networks. IEEE Communications Letters, 20(1), 157-160. http://doi. org/10.1109/LCOMM.2015.2504103 Palangi, H., Ward, R. y Deng, L. (2016). Distributed compressive sensing: A deep learning approach. IEEE Transactions on Signal Processing, 64(17), 4504-4518. http://doi.org/10.1109/TSP.2016.2557301 Pankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer technologies in a decentralized system. En Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) (pp. 620-623). IEEE. http://doi.org/10.1109/EIConRus.2019.8656671 Patil, S. K. y Kant, R. (2014). A fuzzy AHP-Topsis framework for ranking the solu tions of Knowledge Management adoption in Supply Chain to overcome its ba rriers. Expert Systems with Applications, 41(2), 679-693. http://doi.org/10.1016/j. eswa.2013.07.093 Pattanayak, S., Venkateswaran, P. y Nandi, R. (2013). Artificial intelligence based model for channel status prediction: A new spectrum sensing technique for cog nitive radio. International Journal of Communications, Network and System Sciences, 6(3), 139-148. http://doi.org/10.4236/ijcns.2013.63017 Pedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10(19), 127-143. http:// www.scielo.org.co/pdf/ince/v10n19/v10n19a07.pdf Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. y Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1.a ed.). Editorial UD. Petrova, M., Mähönen, P. y Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using support vector machines. En 2017th International Symposium on Wireless Communication Systems (pp. 986-990). IEEE. http://doi.org/10.1109/ISWCS.2010.562450 Petter. (2013). Matlab mex support for Visual Studio 2013. MathWorks. https://www. mathworks.com/matlabcentral/fileexchange/44408-matlab-mex-support-for visual-studio-2013-and-mbuild Pham, C., Tran, N. H., Do, C. T., Moon, S. I. y Hong, C. S. (2014). Spectrum han doff model based on hidden Markov model in cognitive radio networks. En In ternational Conference on Information Networking (pp. 406-411). IEEE. http://net working.khu.ac.kr/layouts/net/publications/data/Spectrum%20Handoff%20 Model%20Based%20on%20Hidden%20Markov%20Model%20in%20Cogniti ve%20Radio%20Networks.pdf Pinto, L. R. M. y Correia, L. H. A. (2018). Analysis of machine learning algo rithms for spectrum decision in cognitive radios. En 2018 15th International Sym posium on Wireless Communication Systems (ISWCS) (pp. 1-6). IEEE. http://doi. org/10.1109/ISWCS.2018.849106 Pla, V., Vidal, J.-R., Martinez-Bauset, J. y Guijarro, L. (2010). Modeling and cha racterization of spectrum white spaces for underlay cognitive radio networks. En 2010 IEEE International Conference on Communications. IEEE. http://doi. org/10.1109/ICC.2010.5501788 Powell, V. y Lehe, L. (s.f.). Principal component analysis explained visually. https:// setosa.io/ev/principal-component-analysis/ Rahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspec tives. IEEE Transactions on Wireless Communications, 13(1), 356-369. http://doi. org/10.1109/TWC.2013.120213.130658 Ramírez Pérez, C. y Ramos Ramos, V.-M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre Innovación y Desarrollo Tecnológico (Ciindet) (pp. 727-733). Ramírez Pérez, C. y Ramos Ramos, V.-M. (2013). On the effectiveness of multi-cri teria decision mechanisms for vertical handoff. En IEEE 27th International Confer ence on Advanced Information Networking and Applications (pp. 1157-1164). IEEE. http://doi.org/10.1109/AINA.2013.114 Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio net works: A review. Pervasive and Mobile Computing, 41, 106-131. http://doi.org/ https://doi.org/10.1016/j.pmcj.2017.07.01 Rizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514- 529. http://doi.org/10.1109/TCDS.2018.2840971 Rodriguez, A. B., Ramirez, L. J. y Chahuan, J. (2015). Nueva generación de heurísti cas para redes de fibra óptica WDM (wavelength división multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135-142. http://dx.doi.org/10.4067/ S0718-07642015000500017 Rodríguez-Colina, E., Ramirez, P. y Carrillo, C. E. (2011). Multiple attribute dyna mic spectrum decision making for cognitive radio networks. En 2011 8th Interna tional Conference on Wireless and Optical Communications Networks. IEEE. http:// doi.org/10.1109/WOCN.2011.587296 Roy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized secondary user selection for quality of service enhancement of two-tier multi user cognitive radio network: A game theoretic approach. Computer Networks, 123, 1-18. http://doi.org/10.1016/j.comnet.2017.05.002 Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. Euro pean Journal of Operational Research, 48(1), 9-26. http://doi.org/10.1016/0377- 2217(90)90057-I Sadanandan, A. (2011). CSVIMPORT. https://www.mathworks.com/matlabcen tral/fileexchange/23573-csvimpo Safavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodo logy. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674. http:// doi.org/10.1109/21.97458 Salcedo, D. (2006). Predicción del IBC utilizando redes neuronales con wavelets [tesis de pregrado, Universidad de los Andes (Venezuela)]. http://bdigital.ula.ve/stora ge/pdftesis/pregrado/tde_arquivos/8/TDE-2007-05-30T05:58:36Z-288/Publi co/Dulmar%20Salcedo.pdf Saleem, Y. y Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1-16. https://doi.org/10.1016/j.jnca.2014.04.001 Salgado, C. (2014). Algoritmo multivariable para la selección dinámica del canal de backup en redes de radio cognitiva basado en el método fuzzy analitical hierarchical process [tesis de maestría, Universidad Distrital Francisco José de Caldas]. Salgado, C., Márquez, H. y Gómez, V. (2016). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Tecnura, 20(49), 135- 153. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09 Salgado, C., Mora, S. y Giral, D. (2016). Collaborative algorithm for the spec trum allocation in distributed cognitive networks. International Journal of Engi neering and Technology, 8(5), 2288-2299. http://doi.org/10.21817/ijet/2016/ v8i5/160805091 Samui, P. (2015). Handbook of research on advanced computational techniques for simula tion-based engineering. IGI Globa Sarmiento, D. A. L., Rivas, E. y García, N. Y. G. (2016). Implementing a simulator of wireless cognitive radio network primary users. International Journal of Applied Engineering Research, 11(2), 967-975. Siddique, N. y Adeli, H. (2013). Computational intelligence: Synergies of fuzzy logic, neural networks and evolutionary computing. Wiley. http://doi. org/10.1002/9781118534823 Song, Q. y Jamalipour, A. (2005). A network selection mechanism for next genera tion networks. En 2005 IEEE International Conference on Communications (vol. 2, pp. 1418-1422). IEEE. http://doi.org/10.1109/ICC.2005.1494578 Soto, J., Castillo, O. y Soria, J. (2010). Chaotic time series prediction using ensem bles of Anfis. En O. Castillo, J. Kacprzyk y W. Pedrycz (eds.), Soft computing for intelligent control and mobile robotics (pp. 287-301). Springer. http://doi. org/10.1007/978-3-642-15534-5_18 Sriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in pac ket multiplexers for voice and data. IEEE Journal on Selected Areas in Communica tions, 4(6), 833-846. http://doi.org/10.1109/JSAC.1986.11464 Stevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U. y Acosta-Elias, J. (2012). Application of MADM method Vikor for vertical handoff in heterogeneous wi reless networks. Ieice Transactions on Communications, 95(2), 599-602. http://doi. org/10.1587/transcom.E95.B.599 Stevens-Navarro, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Ve hicular Technology, 57(2), 1243-1254. http://doi.org/10.1109/TVT.2007.907072 Stevens-Navarro, E., Martinez-Morales, J. D. y Pineda-Rico, U. (2012). Evaluation of vertical handoff decision algorightms based on MADM methods forheterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548. https://core.ac.uk/download/pdf/27220545.pdf Stevens-Navarro, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. En 2006 IEEE 63rd Ve hicular Technology Conference (vol. 2, pp. 947-951). IEEE. http://doi.org/10.1109/ VETECS.2004.138897 Sun, B., Feng, H., Chen, K. y Zhu, X. (2016). A deep learning framework of quanti zed compressed sensing for wireless neural recording. IEEE Access, 4, 5169-5178. http://doi.org/10.1109/ACCESS.2016.2604397 Sundermeyer, M., Ney, H. y Schlüter, R. (2015). From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Transactions on Au dio, Speech, and Language Processing, 23(3), 517-529. http://doi.org/10.1109/ TASLP.2015.2400218 Sutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054. http://doi.org/10.1109/ TNN.1998.712192 Tabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cogniti ve radio networks: Coexistence perspective. En 2012 IEEE Symposium on Wire less Technology and Applications (ISWTA 2012) (pp. 177-181). IEEE. http://doi. org/10.1109/ISWTA.2012.6373837 Tahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU: International Journal of Electronics and Communications, 77, 139-148. http:// doi.org/https://doi.org/10.1016/j.aeue.2017.04.033 Taj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using artificial neural networks based multivariate time series modelling. En 17th Eu ropean Wireless 2011. Sustainable Wireless Technologies. VDE. https://ieeexplore. ieee.org/document/5898018 Tanino, T., Tanaka, T. e Inuiguchi, M. (eds.). (2003). Multi-objective programming and goal programming: Theory and applications (vol. 21). Springer. Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G. y Siris, V. A. (2013). Spectrum as signment in cognitive radio networks: A comprehensive survey. IEEE Com munications Surveys & Tutorials, 15(3), 1108-1135. http://doi.org/10.1109/ SURV.2012.121112.00047 Trigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems ne gotiation approach for handoff in mobile cognitive radio networks. En 2012 5th International Conference on New Technologies, Mobility and Security (NTMS 2012). IEEE. http://doi.org/10.1109/NTMS.2012.6208687 Tripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. http://doi.org/10.1007/s11277-018-6075-9 Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H. y Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. http://doi. org/10.1109/COMST.2014.2362796 Tumuluru, V. K., Wang, P. y Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. En 2010 IEEE International Conference on Communications. IEEE. http://doi.org/10.1109/ICC.2010.5502348 Uyanik, G. S., Canberk, B. y Oktug, S. (2012). Predictive spectrum decision mecha nisms in cognitive radio networks. En 2012 IEEE Globecom Workshops. http:// doi.org/10.1109/GLOCOMW.2012.6477703 Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M. y Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and obser vations. En 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.4108/ ICST.CROWNCOM2010.922 Valero Verdú, S. y Senabre Blanes, C. (2013). Aplicación de un modelo de red neuronal no supervisado a la clasificación de consumidores eléctricos. Club Universitario. Vásquez, H., Hernández, C. y Páez, I. (2015). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research, 10(21), 42.259-42.264. Vasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wire less ad hoc networks. Journal of Network and Computer Applications, 120, 78-118. http://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006 Veeriah, V., Zhuang, N. y Qi, G.-J. (2015). Differential recurrent neural networks for action recognition. En 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. http://doi.org/10.1109/ICCV.2015.46 Velmurugan, T. (2014). Performance based analysis between k-Means and fuzzy C Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 19, 134-146. http://doi.org/10.1016/j.asoc.2014.02.011 Wang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. http://doi.org/10.1109/ JSTSP.2010.209321 Wang, C.-W. y Wang, L.-C. (2009). Modeling and analysis for proactive-decision spectrum handoff in cognitive radio networks. En 2009 IEEE International Confer ence on Communications. IEEE. http://doi.org/10.1109/ICC.2009.51991 Wang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine, 49(3), 74-81. http://doi.org/10.1109/ MCOM.2011.5723803 Wang, L.-C., Wang, C.-W. y Adachi, F. (2011). Load-balancing spectrum decision for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 757-769. http://doi.org/10.1109/JSAC.2011.110408 Wang, L.-C., Wang, C.-W. y Chang, C.-J. (2012). Modeling and analysis for spec trum handoffs in cognitive radio networks. IEEE Transactions on Mobile Comput ing, 11(9), 1499-1513. http://doi.org/10.1109/TMC.2011.15 Wang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized MAC protocol for opportunistic spectrum access in cognitive wireless networks. Computer Communications, 79, 22-36. http://doi.org/https://doi.org/10.1016/j. comcom.2015.09.016 Wang, X. Y., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal prioritization for spectrum sensing in cooperative cognitive radio. Wireless Net works, 16(4), 889-901. http://doi.org/10.1007/s11276-009-0175 Wei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware handover using active network technology. Computer Networks, 50(15), 2855- 2872. http://doi.org/10.1016/j.comnet.2005.11.002 Wei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En Interna tional Conference on Natural Computation (vol. 5, pp. 197-201). IEEE. http://doi. org/10.1109/ICNC.2008.504 Willkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. En 2008 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). IEEE. http://doi. org/10.1109/DYSPAN.2008.48 Winston, O., Thomas, A. y Okelloodongo, W. (2013). Optimizing neural network for TV idle channel prediction in cognitive radio using particle swarm optimiza tion. En Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN 2013) (pp. 25-29). IEEE. http://doi.org/10.1109/ CICSYN.2013.68 Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334. http://doi.org/10.1109/PROC.1986.13634 Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons. Wu, Y., Yang, Q., Liu, X. y Kwak, K. S. (2016). Delay-constrained optimal trans mission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications, 64(7), 2767-2779. http://doi.org/10.1109/ TCOMM.2016.2561936 Xenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analy sis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4 Xing, X., Jing, T., Cheng, W., Huo, Y. y Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90-96. http:// doi.org/10.1109/MWC.2013.6507399 Xing, X., Jing, T., Huo, Y., Li, H. y Cheng, X. (2013). Channel quality prediction based on Bayesian inference in cognitive radio networks. En 2013 Proceedings IEEE In focom (pp. 1465-1473). IEEE. http://doi.org/10.1109/INFCOM.2013.6566941 Xu, G. y Lu, Y. (2006). Channel and modulation selection based on support vec tor machines for cognitive radio. En 2006 IEEE International Conference on Wireless Communications, Networking and Mobile Computing. IEEE. http://doi. org/10.1109/WiCOM.2006.181 Yang, S.-F. y Jung-ShyrWu. (2008). A IEEE 802.21 handover design with QOS pro vision across WLAN and WMAN. En 2008 International Conference on Commu nications, Circuits and Systems (pp. 548-552). IEEE. http://doi.org/10.1109/ICC CAS.2008.4657833 Yang, S.-J. y Tseng, W.-C. (2013). Design novel weighted rating of multiple attri butes scheme to enhance handoff efficiency in heterogeneous wireless net works. Computer Communications, 36(14), 1498-1514. http://doi.org/10.1016/j. comcom.2013.06.005 Yao, Y., Hu, Q., Yu, H. y Grzymala-Busse, J. W. (eds.). (2015). Rough sets, fuzzy sets, data mining, and granular computing (vol. 2639). Tianjin, China: Springer. Yarkan, S. y Arslan, H. (2007). Binary time series approach to spectrum prediction for cognitive radio. En 2007 IEEE 66th Vehicular Technology Conference (pp. 1563- 1567). IEEE. http://doi.org/10.1109/VETECF.2007.332 Yifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning ener gy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. http://doi. org/10.1109/CC.2013.6723882 Yonghui, C. (2010). Study of the Bayesian networks. En 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). IEEE. http://doi.org/10.1109/EDT.2010.5496612 Yoon, K. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage. Youssef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient coopera tive spectrum detection in cognitive radio systems using wavelet fusion. En 2018 International Conference on Computing, Electronic and Electrical Engineering. IEEE. http://doi.org/10.1109/ICECUBE.2018.8610981 Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://doi. org/10.1016/S0019-9958(65)90241-X Zapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analyti cal hierarchy (Feahp) for selecting logistics software. Ingeniería e Investigación, 32(1), 94-99. http://www.revistas.unal.edu.co/index.php/ingeinv/article/ view/28521/33581 Zapata Muñoz, D. F. y Anzola Rojas, C. (2016). Diseño de un algoritmo MAC para la asignación equitativa de espectro en redes inalámbricas de radio cognitiva [tesis de pregrado, Universidad Distrital Francisco José de Caldas]. RIUD. http://reposi tory.udistrital.edu.co/bitstream/11349/3754/1/AnzolaRojasCamilo2016.pdf Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communi cations, 16(2), 730-743. http://doi.org/10.1109/TWC.2016.2628821 Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous net works. En 2004 IEEE Wireless Communications and Networking Conference (vol. 4, pp. 653-658). IEEE. http://doi.org/10.1109/WCNC.2004.1311263 Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spec trum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665). IEEE. https://sigport.org/documents/opportunistic-spectrum-access-tempo ral-spatial-reuse-cognitive-radio-networks Zhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of cogni tive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97(4), 642-658. http://doi.org/10.1109/JPROC.2009.2013017 Zheng, H. y Cao, L. (2005). Device-centric spectrum management. En IEEE Inter national Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 56- 65). IEEE. http://doi.org/10.1109/DYSPAN.2005.1542617 |
bitstream.url.fl_str_mv |
http://repository.udistrital.edu.co/bitstream/11349/32259/3/license.txt http://repository.udistrital.edu.co/bitstream/11349/32259/8/CUBIERTA_modelo_decision_IMPRESION_page-0001%20%281%29.jpg http://repository.udistrital.edu.co/bitstream/11349/32259/9/INTERNAS_modelo_decision_IMPRESION.pdf.jpg http://repository.udistrital.edu.co/bitstream/11349/32259/1/INTERNAS_modelo_decision_IMPRESION.pdf http://repository.udistrital.edu.co/bitstream/11349/32259/2/license_rdf |
bitstream.checksum.fl_str_mv |
997daf6c648c962d566d7b082dac908d e8e5e33f866bfb30ccb0776540f65c88 263d2fb8030bb78aab27bf43af4a4311 4b5925697007b388ea1b6e25243ea246 4460e5956bc1d1639be9ae6146a50347 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Distrital - RIUD |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1803712622724382720 |
spelling |
will be generated::orcid::0000-0002-6148-3099600will be generated::orcid::0000-0001-9983-45556002023-09-21T17:16:30Z2023-09-21T17:16:30Z2020-11978-958-787-245-3http://hdl.handle.net/11349/32259Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo CientíficoLa decisión espectral es un aspecto clave para mejorar el desempeño en las redes de radio cognitiva descentralizadas. Los usuarios secundarios deben tomar decisiones inteligentes en función de la variación del espectro y de las acciones adoptadas por otros usuarios secundarios. A partir de esta dinámica, la probabilidad de que dos o más usuarios secundarios elijan el mismo canal es alta, especialmente cuando el número de usuarios secundarios es mayor que el número de canales disponibles, debido a la externalidad negativa de la red; cuantos más usuarios secundarios seleccionen el mismo canal, menor será la utilidad que cada usuario secundario pueda obtener y el número de interferencias por el acceso simultáneo será mayor. Por esto, para modelar la red bajo parámetros de tráfico realistas, es necesario tener en cuenta la colaboración entre usuarios secundarios. Este libro de investigación presenta una propuesta para mejorar el proceso de toma de decisiones en una red de radio cognitiva descentralizada, y así dotar a los nodos con la capacidad de aprender del entorno, proponiendo estrategias que les permitan a los usuarios secundarios intercambiar información de forma cooperativa o competitiva.Spectral decision is a key aspect to improve performance in decentralized cognitive radio networks. Secondary users must make intelligent decisions based on spectrum variation and actions taken by other secondary users. From this dynamic, the probability that two or more secondary users choose the same channel is high, especially when the number of secondary users is greater than the number of available channels, due to the negative externality of the network; The more secondary users select the same channel, the less utility each secondary user can obtain and the greater the number of interferences due to simultaneous access. Therefore, to model the network under realistic traffic parameters, it is necessary to take into account the collaboration between secondary users. This research book presents a proposal to improve the decision-making process in a decentralized cognitive radio network, and thus provide the nodes with the ability to learn from the environment, proposing strategies that allow secondary users to exchange information cooperative or competitive.BogotápdfspaEspaciosAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Decisión espectralRedes de radioRedes de radio cognitivaSimulaciónAlgoritmos colaborativoRedes de radio cognitivaEspectro radioeléctricoSpectral decisionRadio networksCognitive radio networksSimulationCollaborative algorithmsModelo de decisión espectral colaborativo para redes de radio cognitivaCollaborative spectral decision model for cognitive radio networksbookinfo:eu-repo/semantics/bookhttp://purl.org/coar/resource_type/c_2f333GPP. (2011). IEEE Approved Draft Standard For Information Technology. Local and metropolitan area networks. Specific requirements. Part 22: Cognitive wireless ran medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands IEEE computer society (vol. 2015). https://standards.ieee.org/standard/802_22-2019.htmlAbass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. En 2017 51st Annual Conference on Information Sciences and Systems (pp. 1-5). IEEE. http://doi.org/10.1109/ CISS.2017.7926128Abbas, N., Nasser, Y. y Ahmad, k. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, (1), 1-20. http://doi.org/10.1186/ s13638-015-0381-7Abdulshahed, A. M., Longstaff, A. P. y Fletcher, S. (2015). The application of Anfis prediction models for thermal error compensation on CNC machine tools. Applied Soft Computing Journal, 27, 158-168. http://doi.org/10.1016/j. asoc.2014.11.01Abonyi, J., Andersen, H., Nagy, L. y Szeifert, F. (1999). Inverse fuzzy-process-model based direct adaptive control. Mathematics and Computers in Simulation, 51(1-2), 119-132. http://doi.org/10.1016/s0378-4754(99)00142-1Abramson, N. (1981). Teoría de la información y codificación (5.a ed.). Paraninfo. https:// eva.udelar.edu.uy/pluginfile.php/84635/mod_resource/content/0/Teoria_de_ la_Informacion_y_codificacion-Norman_Abramson_ebook-spanish_.pdfAdeel, A., Larijani, H. y Ahmadinia, A. (2014, 13-16 de mayo). Performance analysis of artificial neural network-based learning schemes for cognitive radio systems in LTE-UL [presentación en conferencia]. 2014 28th International Conference on Advanced Information Networking and Applications, Victoria, Estados Unidos. http://doi.org/10.1109/WAINA.2014.116Ahmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys & Tutorials, 16(2), 776-811. http://doi.org/10.1109/ SURV.2013.082713.00141Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. y khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. http://doi. org/10.1109/COMST.2014.2363082Akin, S. y Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350. http://doi. org/10.1109/TWC.2015.2503272Akter, L., Natarajan, B. y Scoglio, C. (2008, 3-7 de agosto). Modeling and forecasting secondary user activity in cognitive radio networks [presentación en conferencia]. 17th International Conference on Computer Communications and Networks, St. Thomas, Islas Vírgenes, Estados Unidos. http://doi.org/10.1109/ICCCN.2008.ECP.50Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). NeXt generation/ dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159. http://doi.org/10.1016/j.comnet.2006.05.001Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40-48. http://doi.org/10.1109/MCOM.2008.4481339Akyildiz, I. F., Lee, W.-Y. y Chowdhury, k. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836. http://doi.org/10.1016/j.adhoc.2009.01.001Akyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory technical report. Georgia Institute of Technology.Al-Amidie, M., Al-Asadi, A., Micheas, A. C. e Islam, N. E. (2019). Spectrum sensing based on Bayesian generalised likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305-311. http://doi. org/10.1049/iet-com.2018.5276Ali, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials, 19(2), 1277-1304. http://doi.org/10.1109/COMST.2016.2631080Alias, D. M. y Ragesh, G. k. (2016, 23-25 de marzo). Cognitive radio networks: A survey [presentación en conferencia]. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India. http://doi.org/10.1109/WiSPNET.2016.7566489Almasaeid, H. M. y kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. En 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (pp. 1-10). IEEE. http://doi.org/10.1109/DYSPAN.2010.5457862Alnwaimi, G., Arshad, k. y Moessner, k. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934. http://doi.org/10.1109/ LCOMM.2011.062911.110248Alsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En 2009 Proceedings of 18th Internatonal Conference on Computer Communications and Networks (pp. 1-6). IEEE. http://doi. org/10.1109/ICCCN.2009.5235261Amir, M., El-keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. http://doi.org/10.1109/TIT.2011.2119770Amjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, 98, 109-122. http://doi.org/10.1016/j.comnet.2016.01.016Azarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2), second quarter, 338-354. http://doi.org/10.1109/SURV.2011.021111.00064Baran, P. (1964). On distributed communications networks. IEEE Transactions on Communications Systems, 12(1), 1-9. http://doi.org/10.1109/TCOM.1964.1088883Bhowmik, M. y Malathi, P. (2019). Spectrum sensing in cognitive radio using actor-critic neural network with krill herd-whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. http://doi.org/10.1007/s11277-018-6115-5Bkassiny, M., Li, Y. y Jayaweera, S. k. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3), 11361159. http://doi.org/10.1109/SURV.2012.100412.00017Bolstad, W. M. (2007). Introduction to Bayesian statistics (2.a ed.). John Wiley & Sons.Brik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. En 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 611-614). IEEE. http://doi.org/10.1109/ DYSPAN.2005.1542680Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani, D. (2018). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10). http://doi. org/10.1177/1550147717738192Bütün, I., Talay, A. Ç., Altilar, D. T., khalid, M. y Sankar, R. (2010, 21-23 de abril). Impact of mobility prediction on the performance of cognitive radio networks [presentación en simposio]. 2010 Wireless Telecommunications Symposium (WTS), Tampa, Estados Unidos. http://doi.org/10.1109/WTS.2010.5479659Büyüközkan, G., kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. http://doi.org/10.1080/03081070310001633581Büyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy Topsis based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. https://doi.org/10.1016/j. eswa.2011.08.061Byun, S. S., Balasingham, I. y Liang, X. (2008, 21-24 de septiembre). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency [presentación en conferencia]. 2008 IEEE 68th Vehicular Technology Conference, Calgary, Canadá. http://doi.org/10.1109/VETECF.2008.299Cao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining. En 2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (pp. 475-486). IEEE. http://doi.org/10.1109/ SAHCN.2005.1557100Cardenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. y Stevens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. En 2016 International Conference on Electronics, Communications and Computers (pp. 25-31). IEEE. http://doi.org/10.1109/CONIELECOMP.2016.7438547Chang, C.-C. y Lin, C.-J. (2013). Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), artículo 27. http://doi.org/10.1145/1961189.1961199Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. http://doi.org/10.1016/03772217(95)00300-2Chen, D., Zhang, Q. y Jia, W. (2008, 15-17 de mayo). Aggregation aware spectrum assignment in cognitive ad-hoc networks [presentación en conferencia]. 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapur, Singapur. http://doi.org/10.1109/CROWNCOM.2008.4562548Chen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A clusterbased cognitive radio network. En 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). IEEE. http://doi. org/10.1109/DYSPAN.2007.29Chen, Y. y Oh, H.-S. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859. http://doi.org/10.1109/COMST.2014.2364316Cheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En 2011 IEEE 13th International Conference on Communication Technology (pp. 161-164). IEEE. http://doi.org/10.1109/ICCT.2011.6157854Cho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330. https://doi. org/10.1016/j.eswa.2013.03.038Chou, C.-T., Shankar, S., kim, H. y Shin, k. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576588. http://doi.org/10.1109/JSAC.2007.070408Choudhary, D. y Shankar, R. (2012). An Steep-fuzzy AHP-Topsis framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521. https://doi.org/10.1016/j.energy.2012.03.010Christian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114-121. http://doi. org/10.1109/MCOM.2012.6211495Cisco. (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021 [white paper]. https://www.ramonmillan.com/documentos/bibliografia/ VisualNetworkingIndexGlobalMobileDataTrafficForecastUpdate2016_Cisco.pdfCortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [tesis de maestría, Universidad Nacional de Colombia]. BDigital.Cruz-Pol, S., Van Zee, L., kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018). Spectrum management and the impact of RFI on science sensors. En 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (pp. 52-56). IEEE. http://doi.org/10.1109/MICRORAD.2018.843072Csurgai-Horváth, L. y Bitó, J. (2011). Primary and secondary user activity models for cognitive wireless network. En Proceedings of the 11th International Conference on Telecommunications (pp. 189-194). IEEE. https://ieeexplore.ieee.org/document/5969948Dadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. http://doi. org/10.1109/TVT.2015.2440412Dadios, E. P. (ed.). (2012). Fuzzy logic: Algorithms, techniques and implementations. IntechOpen.Darak, S. J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized cognitive radio networks. Digital Signal Processing, 37(1), 13-23. http://doi.org/10.1016/j.dsp.2014.12.001Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dynamic spectrum learning and access policy for multi-standard multi-user cognitive radio networks. En 2014 11th International Symposium on Wireless Communications Systems (ISWCS) (pp. 271-275). Institute of Electrical and Electronics Engineers. http://doi.org/10.1109/ISWCS.2014.693336Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2017). Decision making policy for RF energy harvesting enabled cognitive radios in decentralized wireless networks. Digital Signal Processing, 60, 33-45. http://doi.org/10.1016/j.dsp.2016.08.014Del Ser, J., Matinmikko, M., Gil-Lopez, S. y Mustonen, M. (2010). A novel harmony search based spectrum allocation technique for cognitive radio networks. En 2007 7th International Symposium on Wireless Communication Systems (pp. 233-237). IEEE. http://doi.org/10.1109/ISWCS.2010.5624341Delgado, M. y Rodríguez, B. (2016). Opportunities for a more efficient use of the spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610616. http://doi.org/10.1109/TLA.2016.743720Deng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13), artículo e3726. http://doi.org/10.1002/dac.3726Dhamodharavadhani, S. (2015). A survey on clustering based routing protocols in mobile ad hoc networks. En 2015 International Conference on Soft-Computing and Networks Security (ICSNS) (pp. 1-6). IEEE. http://doi.org/10.1109/ ICSNS.2015.7292426Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Crosslayer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. http://doi. org/10.1109/TVT.2010.2045403Do, C. T., Tran, N. H., Hong, C. S., Lee, S., Lee, J.-J. y Lee, W. (2013). A lightweight algorithm for probability-based spectrum decision scheme in multiple channels cognitive radio networks. IEEE Communications Letters, 17(3), 509-512. http:// doi.org/10.1109/LCOMM.2013.012313.122589Du, k.-L. y Swamy, M. N. S. (2013). Neural networks and statistical learning. Springer.Duan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. Advances in Electrical and Computer Engineering, 11(3), 11-16. http://doi.org/10.4316/aece.2011.03002Dunn, J. C. (1973). A fuzzy relative of the Isodata process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32-57. http://doi. org/10.1080/01969727308546046Fauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380). IEEE. http://doi.org/10.1109/AMS.2007.7Fauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380). IEEE. http://doi.org/10.1109/AMS.2007.7Federal Communications Commission (FCC). (2003a). Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies. https://www.fcc.gov/document/facilitating-opportunities-flexible-efficient-and-reliable-spectrum-1Federal Communications Commission (FCC). (2003b). Notice of proposed rulemaking and order. https://web.cs.ucdavis.edu/~liu/289I/Material/FCC-03-322A1.pdfFerber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley.Flórez-López, R. y Fernández Fernández, J. M. (2008). Las redes neuronales artificiales: fundamentos teóricos y aplicaciones prácticas. Netbiblo.Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso CDMA [tesis de maestría, Universidad Distrital Francisco José de Caldas].Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM.Fudenberg, D. y Tirole, J. (1991). Game theory. MIT Press. https://books.google. com.co/books?id=pFPHkwXro3QCGallardo-Medina, J. R., Pineda-Rico, U. y Stevens-Navarro, E. (2009). Vikor method for vertical handoff decision in beyond 3G wireless networks. En 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE. http://doi.org/10.1109/ICEEE.2009.539332Gavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15(4), 1761-1777. http://doi.org/10.1109/SURV.2013.030713.00113Gers, F. A. y Schmidhuber, E. (2001). LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333-1340. http://doi.org/10.1109/72.963769Giupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En Proceedings of the Third International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi. org/10.1109/CROWNCOM.2008.4562535Goldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99. http://doi.org/10.1023/A:1022602019183Goswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. En 2017 International Conference on Inventive Communication and Computational Technologies (pp. 410-414). IEEE. http://doi. org/10.1109/ICICCT.2017.797523Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Springer. http://doi.org/10.1007/978-3-642-24797-2Graves, A., Mohamed, A.-R. y Hinton, G. (2013). Speech recognition with deep recurrent neural networks. En 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings (pp. 6645-6649). IEEE. http://doi. org/10.1109/ICASSP.2013.6638947Graves, A. y Schmidhuber, J. (2005). Framewise phoneme classification with bidirec tional LSTM and other neural network architectures. Neural Networks, 18(5-6), 602-610. http://doi.org/10.1016/j.neunet.2005.06.042Green, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from groups: Delphi and prediction markets compared. SSRN Electronic Journal, 8, 17- 20. http://doi.org/10.2139/ssrn.1153124Han, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier y Morgan Kauffman.Hasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimiza tion for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. http://doi.org/10.1109/JPROC.2014.2306255Haykin, S. (1998). Neural networks: A comprehensive foundation (2.a ed.). Prentice Hall.He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technol ogy, 59(4), 1578-1592. http://doi.org/10.1109/TVT.2010.204Hernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of spectrum mobility models in cognitive radio networks. International Journal of Applied Engineering Research, 10(21), 42.189-42.196.Hernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technol ogy, 9(12), 1212-1215. https://publications.waset.org/10002921/hybrid-algo rithm-for-frequency-channel-selection-in-wi-fi-networksHernández, C., Giral, D. y Santa, F. (2015). MCDM spectrum handover models for cognitive wireless networks. World Academy of Science, Engineering and Technolo gy, 9(10), 679-682. https://publications.waset.org/10002749/mcdm-spectrum handover-models-for-cognitive-wireless-networksHernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of predic tion models for forecasting spectral opportunities. International Journal of Engineering and Technology, 9(5), 3775-3782. http://doi.org/10.21817/ijet/2017/ v9i5/170905055Hernández, C., Páez, I. y Giral, D. (2015). Modelo AHP-Vikor para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39. http://dx.doi.org/10.14483/ udistrital.jour.tecnura.2015.3.a02Hernández, C., Páez, I. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva. Editorial UD.Hernández, C., Pedraza, L. F., Páez, I. y Rodríguez-Colina, E. (2015). Análisis de la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186. http://dx.doi.org/10.4067/S0718-07642015000600018Hernández, C., Pedraza, L. F. y Martínez, F. H. (2016). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. http://www.scielo. org.co/scielo.php?pid=S0123-921X2016000200006&script=sci_abstract&tlng=esHernández, C., Pedraza, L. F. y Rodríguez-Colina, E. (2016). Fuzzy feedback algo rithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia, (81), 47-62. http://doi.org/10.17533/ udea.redin.n81a05Hernández, C., Salcedo, O. y Pedraza, L. F. (2009). An Arima model for forecasting Wi Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69. http://www. scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-5609200900020001Hernández, C., Salgado, C., López, H. y Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, 2015(1), artículo 216. http:// doi.org/10.1186/s13638-015-0445-8Hernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Inge niería de la Universidad de Antioquia, (67), 52-62. http://www.scielo.org.co/scielo. php?script=sci_arttext&pid=S0120-62302013000200005Hernández Sampieri, R., Fernández-Collado, C. y Baptista Lucio, P. (2006). Metodo logía de la investigación (4.a ed.). McGraw-HHernandez-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe Chalke, M. (2012). Cruam-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En 2012 IEEE Latin-American Conference on Communications. IEEE. http://doi.org/10.1109/LATINCOM.2012.6505997Hochreiter, S. y Schmidhuber, J. (1997). Long short-term memory. Neural Computa tion, 9(8), 1735-1780. http://doi.org/10.1162/neco.1997.9.8.17Hoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive ra dio. Wireless Foundations EECS. https://omidi.iut.ac.ir/SDR/2008/Projects/ Ataei-Game_Theory_Cognitive%20Radios/References/Some%20Fundamen tal%20Limits%20on%20Cognitive%20Radio.pdfHsieh, W. W. (2009). Machine learning methods in the environmental sciences: Neural net works and kernels. Cambridge University PresHübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer.Iftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian game-based user behavior analysis for spectrum mobility in cognitive radios. Phy sical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002Institute of Electrical and Electronics Engineers. (2008). IEEE standard definitions and concepts for dynamic spectrum access: Terminology relating to emerging wireless networks, system functionality, and spectrum management (IEEE Standard 1900.1- 2008). https://standards.ieee.org/standard/1900_1-2008.htmIssariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communi cations Magazine, 47(7), 57-63. http://doi.org/10.1109/MCOM.2009.5183Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. http://doi.org/10.1016/j.patrec.2009.09.011Jang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. http://doi. org/10.1109/21.256541Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and real time reconfigurable antenna designs for autonomous, self-learning future cognitive radios. https://digitalrepository.unm.edu/ece_rpts/36/Ji, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access. Dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. http://doi.org/10.1109/MCOM.2007.358854Jiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Com munications, 13(4), 2176-2188. http://doi.org/10.1109/TWC.2014.02201Joda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary Type-I HARQ process. IEEE Transactions on Com munications, 63(11), 4037-4049. http://doi.org/10.1109/TCOMM.201Kalkan, S. (2018). Special topics in deep learning. http://kovan.ceng.metu.edu.tr/~sinan/ DL/Kanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportu nistic auto-rate media access protocol for ad hoc networks. En First International Conference on Broadband Networks (pp. 600-610). IEEE. https://ieeexplore.ieee. org/document/1363848?section=abstractKasbekar, G. S. y Sarkar, S. (2010). Spectrum auction framework for access alloca tion in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6), 1841-1854. http://doi.org/10.1109/TNET.2010.2051453Kaur, A., Kaur, A. y Sharma, S. (2018). PSO based multiobjective optimization for parameter adaptation in CR based IoTs. En 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT). IEEE. http://doi. org/10.1109/CIACT.2018.8480298Kaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy Vikor & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527. https://doi.org/10.1016/j.energy.2010.02.051Keller, J. M., Liu, D. y Fogel, D. B. (2016). Fundamentals of computational intelligence: Neural networks, fuzzy systems, and evolutionary computation. IEEE y Wiley. http:// doi.org/10.1002/9781119214403Kennedy, E. P., Condon, M. y Dowling, J. (2003). Torque-ripple minimisation in swit ched reluctance motors using a neuro-fuzzy control strategy. En Proceedings of the Iasted International Conference on Modelling and Simulation (pp. 106-109). Iasted.Kibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three step vertical handoff scheme for 4G/B3G networks. En Globecom ’05. IEEE Global Telecommunications Conference (vol. 5, pp. 2752-2756). IEEE. http://doi. org/10.1109/GLOCOM.2005.157826Kim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545. http://doi.org/10.1109/TMC.2007.70751Kim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distri buted channel assignment in cognitive multi-radio mesh networks. En 2010 IFIP wireless days. IEEE. http://doi.org/10.1109/WD.2010.5657733Kondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network se tup without a common control channel. En 2008 IEEE Military Communications Conference. IEEE. http://doi.org/10.1109/MILCOM.2008.4753398Kongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high stand-by energy consumption of ad-hoc Wi-Fi. En 2017 IEEE Global Humanitarian Tech nology Conference. IEEE. http://doi.org/10.1109/GHTC.2017.8239229Krishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. En 2005 IEEE Military Communications Conference (vol. 1, pp. 455-460). IEEE. http://doi.org/10.1109/MILCOM.2005.1605725Krogstad, H. E. (2012). TMA 4180. Optimeringsteori karush-kuhn-tucker theorem. https://folk.ntnu.no/hek/Optimering2012/kkttheoremv2012.pdfKumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive ra dio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188. http://doi.org/10.1016/j.jnca.2015.10.008Kwok, T.-Y. y Yeung, D.-Y. (1997). Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neu ral Networks, 8(3), 630-645. http://doi.org/10.1109/72.572102Lahby, M., Leghris, C. y Abdellah, A. (2011). A hybrid approach for network se lection in heterogeneous multi-access environments. En 2011 4th IFIP Interna tional Conference on New Technologies, Mobility and Security. IEEE. http://doi. org/10.1109/NTMS.2011.5720658Lee, W.-Y. y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cogni tive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845- 3857. http://doi.org/10.1109/T-WC.2008.070391Lee, W.-Y. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive ra dio networks. IEEE Transactions on Mobile Computing, 10(2), 161-174. http://doi. org/10.1109/TMC.2010.147Lertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adap tive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793. http://doi.org/10.1109/TMC.2016.2517619Li, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investiga tion for cognitive radio systems. En IEEE Wireless Communications and Network ing Conference (pp. 894-899). IEEE. http://doi.org/10.1109/WCNC.20Li, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters in CR using autonomously search algorithm. En 2016 IEEE 13th International Conference on Signal Processing (pp. 1146-1151). IEEE. http://doi.org/10.1109/ ICSP.2016.7878007Liu, Y. y Tewfik, A. (2014). Primary traffic characterization and secondary transmis sions. IEEE Transactions on Wireless Communications, 13(6), 3003-3016. http:// doi.org/10.1109/TWC.2014.042914.130861López Sarmiento, D. A. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [tesis doctoral, Universidad Dis trital Francisco José de Caldas]. Repositorio de tesis doctoral del Doctorado en Ingeniería de la Universidad Distrital Francisco José de Caldas. https://docto radoingenieria.udistrital.edu.co/index.php/es/inicio/documentos/repositorio de-tesis-doctoral/item/488-implementacion-de-un-modelo-predictor-para-la toma-de-decisiones-en-redes-inalambricas-de-radio-cognitivaLópez Sarmiento, D. A., Rivas, E. y Gualdrón, O. E. (2015). Elementos funda mentales que componen la radio cognitiva y asignación de bandas espectra les. Información Tecnológica, 26(1), 23-40. http://dx.doi.org/10.4067/S0718- 07642015000100004Ma, L., Shen, C.-C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks. En 2007 2nd IEEE International Sympo sium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547-558). IEEE. http://doi.org/10.1109/DYSPAN.2007.78Marinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication proto cols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164. http://doi.org/10.1007/s11276-011-0392-1Márquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in cognitive radio networks using naive Bayes. Contemporary Engineering Sciences, 10(12), 593-605. http://doi.org/10.12988/ces.2017.7758Masonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 15(3), 1088- 1107. http://doi.org/10.1109/SURV.2012.111412.0016Masters, T. (1993). Practical neural networks recipes in C++. Morgan Kaufmann.Matinmikko, M., Del Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic ba sed framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. http://doi. org/10.1109/JSAC.2013.131117Matinmikko, M., Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intel ligent wireless communication system. VTT Technical Research Centre of FinlandMeerschaert, M. M. (2013). Mathematical modeling (4.a ed.). Elsevier. http://doi.org/ https://doi.org/10.1016/C2010-0-66940-9Mehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ran king approach for vertical mobility in next generation hybrid networks. En IV International Congress on Ultra Modern Telecommunications and Control Systems 2012 (pp. 262-267). IEEE. http://doi.org/10.1109/ICUMT.2012.6459676Melián-Gutiérrez, L., Zazo, S., Blanco-Murillo, J. L., Pérez-Álvarez, I., García Rodríguez, A. y Pérez-Díaz, B. (2013). HF spectrum activity prediction model based on HMM for cognitive radio applications. Physical Communication, 9, 199- 211. http://doi.org/10.1016/j.phycom.2012.09.004Mir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En 2011 IEEE Consumer Communications and Networking Conference (pp. 658-663). IEEE. http:// doi.org/10.1109/CCNC.2011.5766563Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. http://doi.org/10.1109/52.903173Mishra, V., Tong, L. C., Chan, S. y Kumar, A. (2012). Energy aware spectrum de cision framework for cognitive radio networks. En 2012 International Sympo sium on Electronic System Design (ISED 2012) (pp. 309-313). IEEE. http://doi. org/10.1109/ISED.2012.65Mitola III, J. (2000). Cognitive radio: An integrated agent architecture for software defined ra dio [tesis de doctorado, Royal Institute of Technology]. http://www.diva-portal. org/smash/get/diva2:8730/FULLTEXT01.pdfNeshat, M., Adeli, A., Masoumi, A. y Sargozae, M. (2011). A comparative study on Anfis and fuzzy expert system models for concrete mix design. International Journal of Computer Science Issues, 8(3), 196-210. https://www.researchgate.net/ publication/260979471_Comparative_Study_on_Anfis_and_Fuzzy_Expert_ System_Models_for_Concrete_Mix_DesignNisan, N., Roughgarden, T., Tardos, É. y Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge University Press.Ormond, O., Murphy, J. y Muntean, G.-M. (2006). Utility-based intelligent net work selection in beyond 3G systems. En 2006 IEEE International Conference on Communications (vol. 4, pp. 1831-1836). IEEE. http://doi.org/10.1109/ ICC.2006.254986Oyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Jour nal of Network and Computer Applications, 97, 140-156. http://doi.org/https:// doi.org/10.1016/j.jnca.2017.08.016Ozger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cog nitive radio networks. IEEE Communications Letters, 20(1), 157-160. http://doi. org/10.1109/LCOMM.2015.2504103Palangi, H., Ward, R. y Deng, L. (2016). Distributed compressive sensing: A deep learning approach. IEEE Transactions on Signal Processing, 64(17), 4504-4518. http://doi.org/10.1109/TSP.2016.2557301Pankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer technologies in a decentralized system. En Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) (pp. 620-623). IEEE. http://doi.org/10.1109/EIConRus.2019.8656671Patil, S. K. y Kant, R. (2014). A fuzzy AHP-Topsis framework for ranking the solu tions of Knowledge Management adoption in Supply Chain to overcome its ba rriers. Expert Systems with Applications, 41(2), 679-693. http://doi.org/10.1016/j. eswa.2013.07.093Pattanayak, S., Venkateswaran, P. y Nandi, R. (2013). Artificial intelligence based model for channel status prediction: A new spectrum sensing technique for cog nitive radio. International Journal of Communications, Network and System Sciences, 6(3), 139-148. http://doi.org/10.4236/ijcns.2013.63017Pedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10(19), 127-143. http:// www.scielo.org.co/pdf/ince/v10n19/v10n19a07.pdfPedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. y Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1.a ed.). Editorial UD.Petrova, M., Mähönen, P. y Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using support vector machines. En 2017th International Symposium on Wireless Communication Systems (pp. 986-990). IEEE. http://doi.org/10.1109/ISWCS.2010.562450Petter. (2013). Matlab mex support for Visual Studio 2013. MathWorks. https://www. mathworks.com/matlabcentral/fileexchange/44408-matlab-mex-support-for visual-studio-2013-and-mbuildPham, C., Tran, N. H., Do, C. T., Moon, S. I. y Hong, C. S. (2014). Spectrum han doff model based on hidden Markov model in cognitive radio networks. En In ternational Conference on Information Networking (pp. 406-411). IEEE. http://net working.khu.ac.kr/layouts/net/publications/data/Spectrum%20Handoff%20 Model%20Based%20on%20Hidden%20Markov%20Model%20in%20Cogniti ve%20Radio%20Networks.pdfPinto, L. R. M. y Correia, L. H. A. (2018). Analysis of machine learning algo rithms for spectrum decision in cognitive radios. En 2018 15th International Sym posium on Wireless Communication Systems (ISWCS) (pp. 1-6). IEEE. http://doi. org/10.1109/ISWCS.2018.849106Pla, V., Vidal, J.-R., Martinez-Bauset, J. y Guijarro, L. (2010). Modeling and cha racterization of spectrum white spaces for underlay cognitive radio networks. En 2010 IEEE International Conference on Communications. IEEE. http://doi. org/10.1109/ICC.2010.5501788Powell, V. y Lehe, L. (s.f.). Principal component analysis explained visually. https:// setosa.io/ev/principal-component-analysis/Rahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspec tives. IEEE Transactions on Wireless Communications, 13(1), 356-369. http://doi. org/10.1109/TWC.2013.120213.130658Ramírez Pérez, C. y Ramos Ramos, V.-M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre Innovación y Desarrollo Tecnológico (Ciindet) (pp. 727-733).Ramírez Pérez, C. y Ramos Ramos, V.-M. (2013). On the effectiveness of multi-cri teria decision mechanisms for vertical handoff. En IEEE 27th International Confer ence on Advanced Information Networking and Applications (pp. 1157-1164). IEEE. http://doi.org/10.1109/AINA.2013.114Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio net works: A review. Pervasive and Mobile Computing, 41, 106-131. http://doi.org/ https://doi.org/10.1016/j.pmcj.2017.07.01Rizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514- 529. http://doi.org/10.1109/TCDS.2018.2840971Rodriguez, A. B., Ramirez, L. J. y Chahuan, J. (2015). Nueva generación de heurísti cas para redes de fibra óptica WDM (wavelength división multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135-142. http://dx.doi.org/10.4067/ S0718-07642015000500017Rodríguez-Colina, E., Ramirez, P. y Carrillo, C. E. (2011). Multiple attribute dyna mic spectrum decision making for cognitive radio networks. En 2011 8th Interna tional Conference on Wireless and Optical Communications Networks. IEEE. http:// doi.org/10.1109/WOCN.2011.587296Roy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized secondary user selection for quality of service enhancement of two-tier multi user cognitive radio network: A game theoretic approach. Computer Networks, 123, 1-18. http://doi.org/10.1016/j.comnet.2017.05.002Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. Euro pean Journal of Operational Research, 48(1), 9-26. http://doi.org/10.1016/0377- 2217(90)90057-ISadanandan, A. (2011). CSVIMPORT. https://www.mathworks.com/matlabcen tral/fileexchange/23573-csvimpoSafavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodo logy. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674. http:// doi.org/10.1109/21.97458Salcedo, D. (2006). Predicción del IBC utilizando redes neuronales con wavelets [tesis de pregrado, Universidad de los Andes (Venezuela)]. http://bdigital.ula.ve/stora ge/pdftesis/pregrado/tde_arquivos/8/TDE-2007-05-30T05:58:36Z-288/Publi co/Dulmar%20Salcedo.pdfSaleem, Y. y Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1-16. https://doi.org/10.1016/j.jnca.2014.04.001Salgado, C. (2014). Algoritmo multivariable para la selección dinámica del canal de backup en redes de radio cognitiva basado en el método fuzzy analitical hierarchical process [tesis de maestría, Universidad Distrital Francisco José de Caldas].Salgado, C., Márquez, H. y Gómez, V. (2016). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Tecnura, 20(49), 135- 153. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09Salgado, C., Mora, S. y Giral, D. (2016). Collaborative algorithm for the spec trum allocation in distributed cognitive networks. International Journal of Engi neering and Technology, 8(5), 2288-2299. http://doi.org/10.21817/ijet/2016/ v8i5/160805091Samui, P. (2015). Handbook of research on advanced computational techniques for simula tion-based engineering. IGI GlobaSarmiento, D. A. L., Rivas, E. y García, N. Y. G. (2016). Implementing a simulator of wireless cognitive radio network primary users. International Journal of Applied Engineering Research, 11(2), 967-975.Siddique, N. y Adeli, H. (2013). Computational intelligence: Synergies of fuzzy logic, neural networks and evolutionary computing. Wiley. http://doi. org/10.1002/9781118534823Song, Q. y Jamalipour, A. (2005). A network selection mechanism for next genera tion networks. En 2005 IEEE International Conference on Communications (vol. 2, pp. 1418-1422). IEEE. http://doi.org/10.1109/ICC.2005.1494578Soto, J., Castillo, O. y Soria, J. (2010). Chaotic time series prediction using ensem bles of Anfis. En O. Castillo, J. Kacprzyk y W. Pedrycz (eds.), Soft computing for intelligent control and mobile robotics (pp. 287-301). Springer. http://doi. org/10.1007/978-3-642-15534-5_18Sriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in pac ket multiplexers for voice and data. IEEE Journal on Selected Areas in Communica tions, 4(6), 833-846. http://doi.org/10.1109/JSAC.1986.11464Stevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U. y Acosta-Elias, J. (2012). Application of MADM method Vikor for vertical handoff in heterogeneous wi reless networks. Ieice Transactions on Communications, 95(2), 599-602. http://doi. org/10.1587/transcom.E95.B.599Stevens-Navarro, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Ve hicular Technology, 57(2), 1243-1254. http://doi.org/10.1109/TVT.2007.907072Stevens-Navarro, E., Martinez-Morales, J. D. y Pineda-Rico, U. (2012). Evaluation of vertical handoff decision algorightms based on MADM methods forheterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548. https://core.ac.uk/download/pdf/27220545.pdfStevens-Navarro, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. En 2006 IEEE 63rd Ve hicular Technology Conference (vol. 2, pp. 947-951). IEEE. http://doi.org/10.1109/ VETECS.2004.138897Sun, B., Feng, H., Chen, K. y Zhu, X. (2016). A deep learning framework of quanti zed compressed sensing for wireless neural recording. IEEE Access, 4, 5169-5178. http://doi.org/10.1109/ACCESS.2016.2604397Sundermeyer, M., Ney, H. y Schlüter, R. (2015). From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Transactions on Au dio, Speech, and Language Processing, 23(3), 517-529. http://doi.org/10.1109/ TASLP.2015.2400218Sutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054. http://doi.org/10.1109/ TNN.1998.712192Tabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cogniti ve radio networks: Coexistence perspective. En 2012 IEEE Symposium on Wire less Technology and Applications (ISWTA 2012) (pp. 177-181). IEEE. http://doi. org/10.1109/ISWTA.2012.6373837Tahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU: International Journal of Electronics and Communications, 77, 139-148. http:// doi.org/https://doi.org/10.1016/j.aeue.2017.04.033Taj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using artificial neural networks based multivariate time series modelling. En 17th Eu ropean Wireless 2011. Sustainable Wireless Technologies. VDE. https://ieeexplore. ieee.org/document/5898018Tanino, T., Tanaka, T. e Inuiguchi, M. (eds.). (2003). Multi-objective programming and goal programming: Theory and applications (vol. 21). Springer.Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G. y Siris, V. A. (2013). Spectrum as signment in cognitive radio networks: A comprehensive survey. IEEE Com munications Surveys & Tutorials, 15(3), 1108-1135. http://doi.org/10.1109/ SURV.2012.121112.00047Trigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems ne gotiation approach for handoff in mobile cognitive radio networks. En 2012 5th International Conference on New Technologies, Mobility and Security (NTMS 2012). IEEE. http://doi.org/10.1109/NTMS.2012.6208687Tripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. http://doi.org/10.1007/s11277-018-6075-9Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H. y Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. http://doi. org/10.1109/COMST.2014.2362796Tumuluru, V. K., Wang, P. y Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. En 2010 IEEE International Conference on Communications. IEEE. http://doi.org/10.1109/ICC.2010.5502348Uyanik, G. S., Canberk, B. y Oktug, S. (2012). Predictive spectrum decision mecha nisms in cognitive radio networks. En 2012 IEEE Globecom Workshops. http:// doi.org/10.1109/GLOCOMW.2012.6477703Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M. y Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and obser vations. En 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.4108/ ICST.CROWNCOM2010.922Valero Verdú, S. y Senabre Blanes, C. (2013). Aplicación de un modelo de red neuronal no supervisado a la clasificación de consumidores eléctricos. Club Universitario.Vásquez, H., Hernández, C. y Páez, I. (2015). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research, 10(21), 42.259-42.264.Vasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wire less ad hoc networks. Journal of Network and Computer Applications, 120, 78-118. http://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006Veeriah, V., Zhuang, N. y Qi, G.-J. (2015). Differential recurrent neural networks for action recognition. En 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. http://doi.org/10.1109/ICCV.2015.46Velmurugan, T. (2014). Performance based analysis between k-Means and fuzzy C Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 19, 134-146. http://doi.org/10.1016/j.asoc.2014.02.011Wang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. http://doi.org/10.1109/ JSTSP.2010.209321Wang, C.-W. y Wang, L.-C. (2009). Modeling and analysis for proactive-decision spectrum handoff in cognitive radio networks. En 2009 IEEE International Confer ence on Communications. IEEE. http://doi.org/10.1109/ICC.2009.51991Wang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine, 49(3), 74-81. http://doi.org/10.1109/ MCOM.2011.5723803Wang, L.-C., Wang, C.-W. y Adachi, F. (2011). Load-balancing spectrum decision for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 757-769. http://doi.org/10.1109/JSAC.2011.110408Wang, L.-C., Wang, C.-W. y Chang, C.-J. (2012). Modeling and analysis for spec trum handoffs in cognitive radio networks. IEEE Transactions on Mobile Comput ing, 11(9), 1499-1513. http://doi.org/10.1109/TMC.2011.15Wang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized MAC protocol for opportunistic spectrum access in cognitive wireless networks. Computer Communications, 79, 22-36. http://doi.org/https://doi.org/10.1016/j. comcom.2015.09.016Wang, X. Y., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal prioritization for spectrum sensing in cooperative cognitive radio. Wireless Net works, 16(4), 889-901. http://doi.org/10.1007/s11276-009-0175Wei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware handover using active network technology. Computer Networks, 50(15), 2855- 2872. http://doi.org/10.1016/j.comnet.2005.11.002Wei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En Interna tional Conference on Natural Computation (vol. 5, pp. 197-201). IEEE. http://doi. org/10.1109/ICNC.2008.504Willkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. En 2008 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). IEEE. http://doi. org/10.1109/DYSPAN.2008.48Winston, O., Thomas, A. y Okelloodongo, W. (2013). Optimizing neural network for TV idle channel prediction in cognitive radio using particle swarm optimiza tion. En Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN 2013) (pp. 25-29). IEEE. http://doi.org/10.1109/ CICSYN.2013.68Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334. http://doi.org/10.1109/PROC.1986.13634Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.Wu, Y., Yang, Q., Liu, X. y Kwak, K. S. (2016). Delay-constrained optimal trans mission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications, 64(7), 2767-2779. http://doi.org/10.1109/ TCOMM.2016.2561936Xenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analy sis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4Xing, X., Jing, T., Cheng, W., Huo, Y. y Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90-96. http:// doi.org/10.1109/MWC.2013.6507399Xing, X., Jing, T., Huo, Y., Li, H. y Cheng, X. (2013). Channel quality prediction based on Bayesian inference in cognitive radio networks. En 2013 Proceedings IEEE In focom (pp. 1465-1473). IEEE. http://doi.org/10.1109/INFCOM.2013.6566941Xu, G. y Lu, Y. (2006). Channel and modulation selection based on support vec tor machines for cognitive radio. En 2006 IEEE International Conference on Wireless Communications, Networking and Mobile Computing. IEEE. http://doi. org/10.1109/WiCOM.2006.181Yang, S.-F. y Jung-ShyrWu. (2008). A IEEE 802.21 handover design with QOS pro vision across WLAN and WMAN. En 2008 International Conference on Commu nications, Circuits and Systems (pp. 548-552). IEEE. http://doi.org/10.1109/ICC CAS.2008.4657833Yang, S.-J. y Tseng, W.-C. (2013). Design novel weighted rating of multiple attri butes scheme to enhance handoff efficiency in heterogeneous wireless net works. Computer Communications, 36(14), 1498-1514. http://doi.org/10.1016/j. comcom.2013.06.005Yao, Y., Hu, Q., Yu, H. y Grzymala-Busse, J. W. (eds.). (2015). Rough sets, fuzzy sets, data mining, and granular computing (vol. 2639). Tianjin, China: Springer.Yarkan, S. y Arslan, H. (2007). Binary time series approach to spectrum prediction for cognitive radio. En 2007 IEEE 66th Vehicular Technology Conference (pp. 1563- 1567). IEEE. http://doi.org/10.1109/VETECF.2007.332Yifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning ener gy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. http://doi. org/10.1109/CC.2013.6723882Yonghui, C. (2010). Study of the Bayesian networks. En 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). IEEE. http://doi.org/10.1109/EDT.2010.5496612Yoon, K. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage.Youssef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient coopera tive spectrum detection in cognitive radio systems using wavelet fusion. En 2018 International Conference on Computing, Electronic and Electrical Engineering. IEEE. http://doi.org/10.1109/ICECUBE.2018.8610981Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://doi. org/10.1016/S0019-9958(65)90241-XZapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analyti cal hierarchy (Feahp) for selecting logistics software. Ingeniería e Investigación, 32(1), 94-99. http://www.revistas.unal.edu.co/index.php/ingeinv/article/ view/28521/33581Zapata Muñoz, D. F. y Anzola Rojas, C. (2016). Diseño de un algoritmo MAC para la asignación equitativa de espectro en redes inalámbricas de radio cognitiva [tesis de pregrado, Universidad Distrital Francisco José de Caldas]. RIUD. http://reposi tory.udistrital.edu.co/bitstream/11349/3754/1/AnzolaRojasCamilo2016.pdfZhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communi cations, 16(2), 730-743. http://doi.org/10.1109/TWC.2016.2628821Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous net works. En 2004 IEEE Wireless Communications and Networking Conference (vol. 4, pp. 653-658). IEEE. http://doi.org/10.1109/WCNC.2004.1311263Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M. y Gaïti, D. (2016). Opportunistic spec trum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665). IEEE. https://sigport.org/documents/opportunistic-spectrum-access-tempo ral-spatial-reuse-cognitive-radio-networksZhao, Y., Mao, S., Neel, J. O. y Reed, J. H. (2009). Performance evaluation of cogni tive radios: Metrics, utility functions, and methodology. Proceedings of the IEEE, 97(4), 642-658. http://doi.org/10.1109/JPROC.2009.2013017Zheng, H. y Cao, L. (2005). Device-centric spectrum management. En IEEE Inter national Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 56- 65). IEEE. http://doi.org/10.1109/DYSPAN.2005.1542617López Sarmiento, Danilo Alfonso [0000-0002-6148-3099]Giral Ramírez, Diego Armando [0000-0001-9983-4555]Hernádez Suárez, César AugustoLópez Sarmiento, Danilo AlfonsoGiral Ramírez, Diego ArmandoLICENSElicense.txtlicense.txttext/plain; charset=utf-87167http://repository.udistrital.edu.co/bitstream/11349/32259/3/license.txt997daf6c648c962d566d7b082dac908dMD53open accessTHUMBNAILCUBIERTA_modelo_decision_IMPRESION_page-0001 (1).jpgCUBIERTA_modelo_decision_IMPRESION_page-0001 (1).jpgimage/jpeg989698http://repository.udistrital.edu.co/bitstream/11349/32259/8/CUBIERTA_modelo_decision_IMPRESION_page-0001%20%281%29.jpge8e5e33f866bfb30ccb0776540f65c88MD58open accessINTERNAS_modelo_decision_IMPRESION.pdf.jpgINTERNAS_modelo_decision_IMPRESION.pdf.jpgIM Thumbnailimage/jpeg2994http://repository.udistrital.edu.co/bitstream/11349/32259/9/INTERNAS_modelo_decision_IMPRESION.pdf.jpg263d2fb8030bb78aab27bf43af4a4311MD59open accessORIGINALINTERNAS_modelo_decision_IMPRESION.pdfINTERNAS_modelo_decision_IMPRESION.pdfapplication/pdf3387412http://repository.udistrital.edu.co/bitstream/11349/32259/1/INTERNAS_modelo_decision_IMPRESION.pdf4b5925697007b388ea1b6e25243ea246MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repository.udistrital.edu.co/bitstream/11349/32259/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open access11349/32259oai:repository.udistrital.edu.co:11349/322592023-11-02 01:05:25.527open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |