Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva

Con la llegada de las aplicaciones multimedia de banda ancha y la creciente demanda de acceso a la red de información de los dispositivos móviles, es esencial mejorar la eficiencia en la utilización del espectro electromagnético para cubrir las necesidades de altas tasas de bits proporcionales a los...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
OAI Identifier:
oai:repository.udistrital.edu.co:11349/32625
Acceso en línea:
http://hdl.handle.net/11349/32625
Palabra clave:
Modelado espectral
Movilidad espectral
Radio cognitiva
Traspaso proactivo
Modelado de espectro
Movilidad espectral
Radio cognitiva
Handoff proactivo
Tecnología inalámbrica
Comunicaciones inalámbricas
Spectral modeling
Spectral mobility
Cognitive radio
Proactive handoff
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UDISTRITA2_1869454a7f73e6a455328d15124f8dfe
oai_identifier_str oai:repository.udistrital.edu.co:11349/32625
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva
dc.title.titleenglish.spa.fl_str_mv Spectral occupancy prediction model for the analysis and design of cognitive radio networks
title Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva
spellingShingle Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva
Modelado espectral
Movilidad espectral
Radio cognitiva
Traspaso proactivo
Modelado de espectro
Movilidad espectral
Radio cognitiva
Handoff proactivo
Tecnología inalámbrica
Comunicaciones inalámbricas
Spectral modeling
Spectral mobility
Cognitive radio
Proactive handoff
title_short Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva
title_full Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva
title_fullStr Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva
title_full_unstemmed Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva
title_sort Modelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitiva
dc.contributor.orcid.none.fl_str_mv Hernández Suárez, César Augusto [0000-0001-9409-8341]
dc.subject.spa.fl_str_mv Modelado espectral
Movilidad espectral
Radio cognitiva
Traspaso proactivo
topic Modelado espectral
Movilidad espectral
Radio cognitiva
Traspaso proactivo
Modelado de espectro
Movilidad espectral
Radio cognitiva
Handoff proactivo
Tecnología inalámbrica
Comunicaciones inalámbricas
Spectral modeling
Spectral mobility
Cognitive radio
Proactive handoff
dc.subject.lemb.spa.fl_str_mv Modelado de espectro
Movilidad espectral
Radio cognitiva
Handoff proactivo
Tecnología inalámbrica
Comunicaciones inalámbricas
dc.subject.keyword.spa.fl_str_mv Spectral modeling
Spectral mobility
Cognitive radio
Proactive handoff
description Con la llegada de las aplicaciones multimedia de banda ancha y la creciente demanda de acceso a la red de información de los dispositivos móviles, es esencial mejorar la eficiencia en la utilización del espectro electromagnético para cubrir las necesidades de altas tasas de bits proporcionales a los servicios multimedia. Por tal razón, la radio cognitiva se ha convertido en uno de los paradigmas más investigados en las comunicaciones de radio para optimizar el uso del espectro radioeléctrico. Dentro de la movilidad espectral de las redes de radio cognitiva, las estrategias de handoff proactivas resultan ser las más beneficiosas para el usuario primario, dado que no existe periodo de interferencia en el cual coexistan los dos usuarios (primario y secundario); sin embargo, la problemática de esta estrategia radica en la precisión de la predicción de la llegada del usuario primario, es decir, en la predicción de la ocupación espectral de la banda licenciada. El presente libro plantea el desarrollo de un modelo de predicción de la ocupación espectral, que tenga en cuenta las características relevantes del comportamiento del espectro, a partir de mediciones realizadas en un entorno urbano, el cual pueda contribuir al mejoramiento del handoff proactivo y, por ende, del desempeño de las redes de radio cognitiva.
publishDate 2018
dc.date.created.none.fl_str_mv 2018-11
dc.date.accessioned.none.fl_str_mv 2023-11-03T15:28:10Z
dc.date.available.none.fl_str_mv 2023-11-03T15:28:10Z
dc.type.spa.fl_str_mv book
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.identifier.isbn.spa.fl_str_mv 978-958-787-049-7
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/32625
dc.identifier.editorial.spa.fl_str_mv Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico
identifier_str_mv 978-958-787-049-7
Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico
url http://hdl.handle.net/11349/32625
dc.relation.ispartofseries.spa.fl_str_mv Espacios
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
dc.source.bibliographicCitation.spa.fl_str_mv [1] S. Rocke and A. M. Wyglinski, “Geo-statistical analysis of wireless spectrum occupancy using extreme value theory,” Commun. Comput. Signal Process., no. Aug., pp. 753-758, 2011.
[2] T. M. Roberson, R. B. Taher, K. J. Bacchus, and D. A. Zdunek, “Long-term spectral occupancy findings in Chicago,” in New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 100-107, 2011.
[3] F. H. Sanders, B. J. Ramsey, and V. S. Lawrence, “Broadband spectrum survey at Los Angeles, California,” US Department of Commerce National Telecommunications and Information Administration, 1997.
[4] M. López-Benítez and F. Casadevall, “Spectrum occupancy in realistic scenarios and duty cycle model for cognitive radio,” Adv. Electron. Telecommun., vol. 1, no. 1, pp. 26-34, 2010.
[5] M. Wellens and P. Mahonen, “Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model,” in Testbeds and Research Infrastructures for the Development of Networks & Communities and Wor- kshops (TridentCom) 5th International Conference, 2009.
[6] K. Patil, K. Skouby, A. Chandra, and R. Prasad, “Spectrum occupancy statistics in the context of cognitive radio,” in 2011 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 1-5, 2011.
[7] S. Yin, D. Chen, Q. Zhang, M. Liu, and S. Li, “Mining spectrum usage data: a large-scale spectrum measurement study,” IEEE Trans. Mob. Comput., vol. 11, no. 6, pp. 1033-1046, 2012.
[8] R. I. C. Chiang, G. B. Rowe, and K. W. Sowerby, “A Quantitative Analysis of Spectral Occupancy Measurements for Cognitive Radio,” in Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, 2007.
[9] M. López and F. Casadevall, “Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio,” Eur. Trans. Telecommun., vol. 21, no. 8, pp. 680-693, 2010.
[10] IEEE Standard Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management, IEEE Standards Coordinating Committee 41 on Dynamic Spectrum, IEEE Std. 1900.1-2008, 2008.
[11] L. F. Pedraza, F. Forero, and I. Paez, “Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia,” Ing. y Cienc., vol. 10, no. 19, pp. 127-143, 2014.
[12] S. Haykin, “Cognitive Radio : Brain-Empowered,” IEEE J. Sel. AREAS Commun., vol. 23, no. 2, pp. 201-220, 2005.
[13] I. F. Akyildiz, L. Won-Yeol, M. C. Vuran, and S. Mohanty, “NeXt generation/ dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Networks, vol. 50, no. 13, pp. 2127-2159, 2006.
[14] A. Al-Hourani, V. Trajkovi, S. Chandrasekharan, and S. Kandeepan, “Spectrum occupancy measurements for different urban environments,” Eur. Conf. Networks Commun. Paris, 2015.
[15] M. Mehdawi, N. G. Riley, M. Ammar, A. Fanan, and M. Zolfaghari, “Spectrum occupancy measurements and lessons learned in the context of cognitive radio,” in The Telecommunications Forum Telfor, 2015.
[16] L. Pedraza, F. Forero, and I. Paez, “Metropolitan Spectrum Survey in Bogota Colombia,” in The IEEE International Conference on Advanced Information Networking and Applications Workshops, 2013.
[17] M. Wellens and P. Mahonen, “Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model,” Mob. Netw. Appl, vol. 15, no. 3, pp. 461-474, 2010.
[18] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” IEEE Commun. Mag., vol. 46, no. 4, pp. 40-48, 2008.
[19] E. Ahmed, A. Gani, S. Abolfazli, L. J. Yao, and S. U. Khan, “Channel Assignment Algorithms in Cognitive Radio Networks: Taxonomy, Open Issues, and Challenges,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 795-823, 2016.
[20] FCC, “Spectrum policy task force report, ET Docket No.02-155,” Technical Report Series, Nov. 2002.
[21] Federal Communications Commission, “Notice of proposed rulemaking and order,” Washington, D.C., 2003.
[22] N. Hoven, R. Tandra, and A. Sahai, “Some fundamental limits on cognitive radio,” Wireless Foundations EECS, Univ. of California, Berkeley, 2005.
[23] L. F. Pedraza, C. Hernández, K. Galeano, E. Rodríguez-Colina, and I. P. Páez, Ocupación espectral y modelo de radio cognitiva para Bogotá, 1ª ed. Bogotá: Editorial UD, 2016.
[24] G. Tsiropoulos, O. Dobre, M. Ahmed, and K. Baddour, “Radio Resource Allocation Techniques for Efficient Spectrum Access in Cognitive Radio Networks,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 824-847, 2016.
[25] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, 1999.
[26] M. Ozger and O. B. Akan, “On the utilization of spectrum opportunity in cognitive radio networks,” IEEE Commun. Lett., vol. 20, no. 1, pp. 157-160, 2016.
[27] M. Delgado and B. Rodriguez, “Opportunities for a more Efficient Use of the Spectrum based in Cognitive Radio,” IEEE Lat. Am. Trans., vol. 14, no. 2, pp. 610-616, 2016.
[28] C. Hernández, Modelo adaptativo de handoff espectral para la mejora en el desempeño de la movilidad en redes móviles de radio cognitiva, Bogotá: Universidad Nacional de Colombia, 2017.
[29] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHNs: Cognitive radio ad hoc networks,” Ad Hoc Networks, vol. 7, no. 5, pp. 810-836, 2009.
[30] J. Aguilar and A. Navarro, “Radio cognitiva: estado del arte,” Sist. y Telemática, vol. 9, no. 16, pp. 31-53, 2011.
[31] A. Lertsinsrubtavee and N. Malouch, “Hybrid Spectrum Sharing Through Adaptive Spectrum Handoff and Selection,” IEEE Trans. Mob. Comput., 2016.
[32] K. Kumar, A. Prakash, and R. Tripathi, “Spectrum handoff in cognitive radio networks: A classification and comprehensive survey,” J. Netw. Comput. Appl., vol. 61, pp. 161-188, 2016.
[33] L. Pedraza, C. Hernandez, and E. Rodriguez, “Modeling of GSM Spectrum Based on Seasonal ARIMA model,” in The 6th IEEE Latin-American Conference on Communications, 2014.
[34] International Telecommunication Union, Report ITU-R SM.2256, spectrum occupancy measurements and evaluation, Geneva, Switzerland, 2012.
[35] L. F. Pedraza, Modelo de propagación para un entorno urbano que identifica las oportunidades espectrales para redes móviles de radio cognitiva, Bogotá: Universidad Nacional de Colombia, 2017.
[36] F. Digham, M. S. Alouini, and M. Simon, “On the Energy Detection of Unknown Signals Over Fading Channels,” IEEE Trans. Commun., vol. 55, no. 1, pp. 21-24, 2007.
[37] R. Clegg, “A practical guide to measuring the Hurst parameter,” Int. J. Simul. Syst. Sci. Technol., vol. 7, no. 2, pp. 3-14, 2006.
[38] X. Xing, T. Jing, W. Cheng, Y. Huo, and X. Cheng, “Spectrum prediction in cognitive radio networks,” IEEE Wirel. Commun., vol. 20, no. 2, pp. 90-96, 2013.
[39] Y. Shu, M. Yu, J. Liu, and O. Yang, “Wireless traffic modeling and prediction using seasonal ARIMA models,” in The IEEE Int. Conf. on Commun, 2003.
[40] V. G. Tran, V. Debusschere, and S. Bacha, “Hourly server workload forecasting up to 168 hours ahead using Seasonal ARIMA model,” in The IEEE Int. Conf. on Ind. Technology, 2012.
[41] W. Wang and Z. Niu, “Time series analysis of NASDAQ composite based on seasonal ARIMA model,” in The Int. Conf. on Manage. and Service Sci., 2009.
[42] Z. Wang and S. Salous, “Time series ARIMA model of spectrum occupancy for cognitive radio,” in IET Seminar on Cognitive Radio and Software Defined Radio: Technologies and Techniques, p. 25, 2008.
[43] A. Gorcin, H. Celebi, K. Qaraqe, and H. Arslan, “An autoregressive approach for spectrum occupancy modeling and prediction based on synchronous measurements,” in The Int. Symp. on Personal Indoor and Mobile Radio Commun., 2011.
[44] G. Box, G. Jenkins, and C. Reinsel, Time Series Analysis: Forecasting and Control (4th ed). New Jersey: Wiley, 2008.
[45] A. E. Permanasari, I. Hidayah, and I. Bustoni, “SARIMA (Seasonal ARIMA) implementation on time series to forecast the number of Malaria incidence,” in The Int. Conf. on Inform. Technology and Electrical Engineering, 2013.
[46] A. Mahram and M. G. Shayesteh, “Blind wideband spectrum sensing in cognitive radio networks based on direction of arrival estimation model and generalised autoregressive conditional heteroscedasticity noise modelling,” IET Commun., vol. 8, no. 18, pp. 3271-3279, 2014.
[47] N. C. Anand, C. Scoglio, and B. Natarajan, “GARCH-non-linear time series model for traffic modeling and prediction,” in IEEE Network Operations and Management Symposium, 2008.
[48] S. Kim, “Forecasting internet traffic by using seasonal GARCH models,” J. Commun. Networks, vol. 13, no. 6, pp. 621-624, 2011.
[49] Q. Tran, Z. Ma, H. Li, L. Hao, and Q. Trinh, “A Multiplicative Seasonal ARIMA/GARCH Model in EVN Traffic Prediction,” Int. J. Commun. Netw. Syst. Sci., vol. 8, pp. 43-49, 2015
[50] Y. Zhanga, D. Fayb, L. Kilmartina, and A. Mooreb, “A Garch-based adaptive playout delay algorithm for VoIP,” Comput. Networks, vol. 54, no. 17, pp. 3108-3122, 2010.
[51] R. Engle, “The Use of ARCH/GARCH Models in Applied Econometrics,” J. Econ. Perspect., vol. 15, no. 4, pp. 157-168, 1982.
[52] T. Bollersleva, “Generalized autoregressive conditional heteroskedasticity,” J. Econom., vol. 31(3), pp. 307-327, 1986.
[53] A. Chinomona, “Time Series Modelling with Application to South African Inflation Data,” Master Sci. Stat. Univ. KwaZulu-Natal, 2009.
[54] N. Edward, “Modelling and Forecasting Using Time Series Garch Models: An Application of Tanzania Inflation Rate Data,” M.S. thesis, University of Dar es-Salaam, Tanzania, 2011.
[55] I. Talke, “Modelling volatility in time series data,” M.S. thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2003.
[56] C. Gourieroux and A. Monfort, Time Series and Dynamic Models (1st ed.). Cambridge: Cambridge University Press, 1997.
[57] W. Bednarczyk and P. Gajewski, “Hidden Markov Models Based Channel Status Prediction for Cognitive Radio Networks,” in PIERS Proceedings, 2015.
[58] T. Black, B. Kerans, and A. Kerans, “Implementation of Hidden Markov Model spectrum prediction algorithm,” in 2012 International Symposium on Communications and Information Technologies, ISCIT 2012, pp. 280-283, 2012.
[59] V. Tumuluru, P. Wang, and D. Niyato, “Channel status prediction for cognitive radio networks,” Wirel. Commun. Mob. Comput., vol. 12, no. 10, pp. 862-874, 2012.
[60] L. Yang, Y. Dong, H. Zhang, H. Zhao, H. Shi, and X. Zhao, “Spectrum usage prediction based on high-order markov model for cognitive radio networks,” in The Int. Conf. on Comput. and Inform. Technology, 2010.
[61] M. López-Benítez and F. Casadevall, “Statistical Prediction of Spectrum Occupancy Perception in Dynamic Spectrum Access Networks,” in 2011 IEEE International Conference on Communications (ICC), 2011.
[62] C. Erlwein, “Applications of hidden Markov models in financial modelling,” Ph.D. dissertation, Brunel University, London, 2008.
[63] J. Norris, Markov Chains (1st ed.). Cambridge: Cambridge University Press, 1997.
[64] J. D. Hamilton, Time series analysis. Vol. 2. Princeton: Princeton University Press, 1994.
[65] M. Zakai, “On the optimal filtering of diffusion processes,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 11, no. 3, pp. 230-243, 1969.
[66] R. Elliott, L. Aggoun, and J. Moore, Hidden Markov Models Estimation and Control (Vol. 29). New York: Springer-Verlag, 1995.
[67] J. Hull and A. White, “Pricing Interest-Rate-Derivative Securities,” Rev. Financ. Stud., vol. 3, no. 4, pp. 573-592, 1990.
[68] C. Yu, Y. He, and T. Quan, “Frequency Spectrum Prediction Method Based on EMD and SVR,” in The Intelligent Systems Design and Applications, 2008.
[69] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” in The Proceedings of the Royal Society, 1998.
[70] I. Magrin and R. Baraniuk, “Empirical Mode Decomposition based time-frequency attributes,” in The SEG Meeting, 1999.
[71] H. Zheng and L. Cao, “Device-centric spectrum management,” in IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 56-65, 2005.
[72] F. Dufrenois and D. Hamad, “Fuzzy weighted support vector regression for multiple linear model estimation : application to object tracking in image sequences.,” in Paper presented at the International Joint Conference on Neural Networks, 2007.
[73] D. Li and Y. Cao, “SOFM based support vector regression model for prediction and its application in power system transient stability forecasting,” in The International Power Engineering Conference, 2005.
[74] X. Bai, S., Zhou and F. Xu, “‘Soft decision’ spectrum prediction based on backpropagation neural networks,” in International Conference on Computing, Management and Telecommunications, 2014.
[75] S. Bai, X. Zhou, and F. Xu, “Spectrum prediction based on improved-back-propagation neural networks,” in The International Conference on Natural Computation, 2015.
[76] L. Kunwei, Z. Hangsheng, Z. Jianzhao, L. Cao, and L. Menglin, “A spectrum prediction approach based on neural networks optimized by genetic algorithm in cognitive radio networks,” in The International Conference on Wireless Communications, Networking and Mobile Computing, 2014.
[77] S. Iliya, E. Goodyer, M. Gongora, J. Shell, and J. Gow, “Optimized Artificial Neural Network Using Differential Evolution for Prediction of RF Power in VHF / UHF TV and GSM 900 Bands for Cognitive Radio Networks,” in 2014 14th UK Workshop on Computational Intelligence (UKCI), 2014, pp. 1-6.
[78] Y. Chen and H.-S. Oh, “Spectrum measurement modelling and prediction based on wavelets,” IET Commun., vol. 10, no. 16, pp. 2192-2198, 2016.
[79] Q. Zhang and A. Benveniste, “IEEE Transactions on Neural Networks,” Wavelet networks, vol. 3, no. 6, pp. 889-898, 1992.
[80] I. Daubechies, “Ten Lectures on Wavelets (8th ed.),” Philadelphia SIAM, 2004.
[81] D. Veitch, “Wavelet Neural Networks and their application in the study of dynamical systems,” Ph.D. dissertation, University of York, York, UK, 2005.
[82] C. M. Akujuobi, E. Awada, M. Sadiku, and W. Ali, “Wavelet-based differential nonlinearity testing of mixed signal system ADCs,” Pap. Present. IEEE Proc. SoutheastCon, Richmond, 2007.
[83] L. Chun-Lin, “A tutorial of the wavelet transform,” in NTUEE, 2010.
[84] E. Frimpong and P. Okyere, “Monthly energy consumption forecasting using wavelet analysis and radial basis function neural network,” J. Sci. Technol., vol. 30, no. 2, pp. 157-163, 2010.
[85] J. Li, J. Cheng, J. Shi, and F. Huang, “Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement,” Adv. Comput. Sci. Inf. Eng., vol. 2, pp. 553-558, 2012.
[86] R. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting with Exponential Smoothing: The State Space Approach (1st ed.). Berlin: Springer-Verlag, 2008.
[87] D. A. Dickey and W. A. Fuller, “Distribution of estimators for autoregressive time series with a unit root,” J. Amer. Stat. Assoc, vol. 74, no. 366, pp. 427-431, 1979.
[88] H. Bozdogan, “Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions,” Psychometrika, vol. 52(3), pp. 345- 370, 1987.
[89] L. Debnath and F. Shah, Wavelet Transforms and Their Applications (2nd ed). New York: Birkhäuser, 2014.
bitstream.url.fl_str_mv http://repository.udistrital.edu.co/bitstream/11349/32625/3/license.txt
http://repository.udistrital.edu.co/bitstream/11349/32625/2/license_rdf
http://repository.udistrital.edu.co/bitstream/11349/32625/1/MODELO-pre-5taco.pdf
http://repository.udistrital.edu.co/bitstream/11349/32625/4/MODELO-pre-5taco.pdf.jpg
bitstream.checksum.fl_str_mv 997daf6c648c962d566d7b082dac908d
4460e5956bc1d1639be9ae6146a50347
c2912a3e209729ada73506336a1be839
4572bb151b1666679e2f32ef58626924
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Distrital - RIUD
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1814111001586434048
spelling will be generated::orcid::0000-0001-9409-83416002023-11-03T15:28:10Z2023-11-03T15:28:10Z2018-11978-958-787-049-7http://hdl.handle.net/11349/32625Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo CientíficoCon la llegada de las aplicaciones multimedia de banda ancha y la creciente demanda de acceso a la red de información de los dispositivos móviles, es esencial mejorar la eficiencia en la utilización del espectro electromagnético para cubrir las necesidades de altas tasas de bits proporcionales a los servicios multimedia. Por tal razón, la radio cognitiva se ha convertido en uno de los paradigmas más investigados en las comunicaciones de radio para optimizar el uso del espectro radioeléctrico. Dentro de la movilidad espectral de las redes de radio cognitiva, las estrategias de handoff proactivas resultan ser las más beneficiosas para el usuario primario, dado que no existe periodo de interferencia en el cual coexistan los dos usuarios (primario y secundario); sin embargo, la problemática de esta estrategia radica en la precisión de la predicción de la llegada del usuario primario, es decir, en la predicción de la ocupación espectral de la banda licenciada. El presente libro plantea el desarrollo de un modelo de predicción de la ocupación espectral, que tenga en cuenta las características relevantes del comportamiento del espectro, a partir de mediciones realizadas en un entorno urbano, el cual pueda contribuir al mejoramiento del handoff proactivo y, por ende, del desempeño de las redes de radio cognitiva.With the arrival of broadband multimedia applications and the growing demand for access to the information network of mobile devices, it is essential to improve the efficiency in the use of the electromagnetic spectrum to cover the needs of high bit rates proportional to the services multimedia. For this reason, cognitive radio has become one of the most researched paradigms in radio communications to optimize the use of the radio spectrum. Within the spectral mobility of cognitive radio networks, proactive handoff strategies turn out to be the most beneficial for the primary user, given that there is no interference period in which the two users (primary and secondary) coexist; However, the problem with this strategy lies in the precision of the prediction of the arrival of the primary user, that is, in the prediction of the spectral occupancy of the licensed band. This book proposes the development of a spectral occupancy prediction model, which takes into account the relevant characteristics of the spectrum behavior, based on measurements carried out in an urban environment, which can contribute to the improvement of proactive handoff and, therefore, hence, the performance of cognitive radio networks.BogotápdfEspaciosAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Modelado espectralMovilidad espectralRadio cognitivaTraspaso proactivoModelado de espectroMovilidad espectralRadio cognitivaHandoff proactivoTecnología inalámbricaComunicaciones inalámbricasSpectral modelingSpectral mobilityCognitive radioProactive handoffModelo de predicción de la ocupación espectral para el análisis y diseño de redes de radio cognitivaSpectral occupancy prediction model for the analysis and design of cognitive radio networksbookhttp://purl.org/coar/resource_type/c_2f33[1] S. Rocke and A. M. Wyglinski, “Geo-statistical analysis of wireless spectrum occupancy using extreme value theory,” Commun. Comput. Signal Process., no. Aug., pp. 753-758, 2011.[2] T. M. Roberson, R. B. Taher, K. J. Bacchus, and D. A. Zdunek, “Long-term spectral occupancy findings in Chicago,” in New Frontiers in Dynamic Spectrum Access Networks (DySPAN), pp. 100-107, 2011.[3] F. H. Sanders, B. J. Ramsey, and V. S. Lawrence, “Broadband spectrum survey at Los Angeles, California,” US Department of Commerce National Telecommunications and Information Administration, 1997.[4] M. López-Benítez and F. Casadevall, “Spectrum occupancy in realistic scenarios and duty cycle model for cognitive radio,” Adv. Electron. Telecommun., vol. 1, no. 1, pp. 26-34, 2010.[5] M. Wellens and P. Mahonen, “Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model,” in Testbeds and Research Infrastructures for the Development of Networks & Communities and Wor- kshops (TridentCom) 5th International Conference, 2009.[6] K. Patil, K. Skouby, A. Chandra, and R. Prasad, “Spectrum occupancy statistics in the context of cognitive radio,” in 2011 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 1-5, 2011.[7] S. Yin, D. Chen, Q. Zhang, M. Liu, and S. Li, “Mining spectrum usage data: a large-scale spectrum measurement study,” IEEE Trans. Mob. Comput., vol. 11, no. 6, pp. 1033-1046, 2012.[8] R. I. C. Chiang, G. B. Rowe, and K. W. Sowerby, “A Quantitative Analysis of Spectral Occupancy Measurements for Cognitive Radio,” in Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, 2007.[9] M. López and F. Casadevall, “Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio,” Eur. Trans. Telecommun., vol. 21, no. 8, pp. 680-693, 2010.[10] IEEE Standard Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management, IEEE Standards Coordinating Committee 41 on Dynamic Spectrum, IEEE Std. 1900.1-2008, 2008.[11] L. F. Pedraza, F. Forero, and I. Paez, “Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia,” Ing. y Cienc., vol. 10, no. 19, pp. 127-143, 2014.[12] S. Haykin, “Cognitive Radio : Brain-Empowered,” IEEE J. Sel. AREAS Commun., vol. 23, no. 2, pp. 201-220, 2005.[13] I. F. Akyildiz, L. Won-Yeol, M. C. Vuran, and S. Mohanty, “NeXt generation/ dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Networks, vol. 50, no. 13, pp. 2127-2159, 2006.[14] A. Al-Hourani, V. Trajkovi, S. Chandrasekharan, and S. Kandeepan, “Spectrum occupancy measurements for different urban environments,” Eur. Conf. Networks Commun. Paris, 2015.[15] M. Mehdawi, N. G. Riley, M. Ammar, A. Fanan, and M. Zolfaghari, “Spectrum occupancy measurements and lessons learned in the context of cognitive radio,” in The Telecommunications Forum Telfor, 2015.[16] L. Pedraza, F. Forero, and I. Paez, “Metropolitan Spectrum Survey in Bogota Colombia,” in The IEEE International Conference on Advanced Information Networking and Applications Workshops, 2013.[17] M. Wellens and P. Mahonen, “Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model,” Mob. Netw. Appl, vol. 15, no. 3, pp. 461-474, 2010.[18] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” IEEE Commun. Mag., vol. 46, no. 4, pp. 40-48, 2008.[19] E. Ahmed, A. Gani, S. Abolfazli, L. J. Yao, and S. U. Khan, “Channel Assignment Algorithms in Cognitive Radio Networks: Taxonomy, Open Issues, and Challenges,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 795-823, 2016.[20] FCC, “Spectrum policy task force report, ET Docket No.02-155,” Technical Report Series, Nov. 2002.[21] Federal Communications Commission, “Notice of proposed rulemaking and order,” Washington, D.C., 2003.[22] N. Hoven, R. Tandra, and A. Sahai, “Some fundamental limits on cognitive radio,” Wireless Foundations EECS, Univ. of California, Berkeley, 2005.[23] L. F. Pedraza, C. Hernández, K. Galeano, E. Rodríguez-Colina, and I. P. Páez, Ocupación espectral y modelo de radio cognitiva para Bogotá, 1ª ed. Bogotá: Editorial UD, 2016.[24] G. Tsiropoulos, O. Dobre, M. Ahmed, and K. Baddour, “Radio Resource Allocation Techniques for Efficient Spectrum Access in Cognitive Radio Networks,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 824-847, 2016.[25] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, 1999.[26] M. Ozger and O. B. Akan, “On the utilization of spectrum opportunity in cognitive radio networks,” IEEE Commun. Lett., vol. 20, no. 1, pp. 157-160, 2016.[27] M. Delgado and B. Rodriguez, “Opportunities for a more Efficient Use of the Spectrum based in Cognitive Radio,” IEEE Lat. Am. Trans., vol. 14, no. 2, pp. 610-616, 2016.[28] C. Hernández, Modelo adaptativo de handoff espectral para la mejora en el desempeño de la movilidad en redes móviles de radio cognitiva, Bogotá: Universidad Nacional de Colombia, 2017.[29] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHNs: Cognitive radio ad hoc networks,” Ad Hoc Networks, vol. 7, no. 5, pp. 810-836, 2009.[30] J. Aguilar and A. Navarro, “Radio cognitiva: estado del arte,” Sist. y Telemática, vol. 9, no. 16, pp. 31-53, 2011.[31] A. Lertsinsrubtavee and N. Malouch, “Hybrid Spectrum Sharing Through Adaptive Spectrum Handoff and Selection,” IEEE Trans. Mob. Comput., 2016.[32] K. Kumar, A. Prakash, and R. Tripathi, “Spectrum handoff in cognitive radio networks: A classification and comprehensive survey,” J. Netw. Comput. Appl., vol. 61, pp. 161-188, 2016.[33] L. Pedraza, C. Hernandez, and E. Rodriguez, “Modeling of GSM Spectrum Based on Seasonal ARIMA model,” in The 6th IEEE Latin-American Conference on Communications, 2014.[34] International Telecommunication Union, Report ITU-R SM.2256, spectrum occupancy measurements and evaluation, Geneva, Switzerland, 2012.[35] L. F. Pedraza, Modelo de propagación para un entorno urbano que identifica las oportunidades espectrales para redes móviles de radio cognitiva, Bogotá: Universidad Nacional de Colombia, 2017.[36] F. Digham, M. S. Alouini, and M. Simon, “On the Energy Detection of Unknown Signals Over Fading Channels,” IEEE Trans. Commun., vol. 55, no. 1, pp. 21-24, 2007.[37] R. Clegg, “A practical guide to measuring the Hurst parameter,” Int. J. Simul. Syst. Sci. Technol., vol. 7, no. 2, pp. 3-14, 2006.[38] X. Xing, T. Jing, W. Cheng, Y. Huo, and X. Cheng, “Spectrum prediction in cognitive radio networks,” IEEE Wirel. Commun., vol. 20, no. 2, pp. 90-96, 2013.[39] Y. Shu, M. Yu, J. Liu, and O. Yang, “Wireless traffic modeling and prediction using seasonal ARIMA models,” in The IEEE Int. Conf. on Commun, 2003.[40] V. G. Tran, V. Debusschere, and S. Bacha, “Hourly server workload forecasting up to 168 hours ahead using Seasonal ARIMA model,” in The IEEE Int. Conf. on Ind. Technology, 2012.[41] W. Wang and Z. Niu, “Time series analysis of NASDAQ composite based on seasonal ARIMA model,” in The Int. Conf. on Manage. and Service Sci., 2009.[42] Z. Wang and S. Salous, “Time series ARIMA model of spectrum occupancy for cognitive radio,” in IET Seminar on Cognitive Radio and Software Defined Radio: Technologies and Techniques, p. 25, 2008.[43] A. Gorcin, H. Celebi, K. Qaraqe, and H. Arslan, “An autoregressive approach for spectrum occupancy modeling and prediction based on synchronous measurements,” in The Int. Symp. on Personal Indoor and Mobile Radio Commun., 2011.[44] G. Box, G. Jenkins, and C. Reinsel, Time Series Analysis: Forecasting and Control (4th ed). New Jersey: Wiley, 2008.[45] A. E. Permanasari, I. Hidayah, and I. Bustoni, “SARIMA (Seasonal ARIMA) implementation on time series to forecast the number of Malaria incidence,” in The Int. Conf. on Inform. Technology and Electrical Engineering, 2013.[46] A. Mahram and M. G. Shayesteh, “Blind wideband spectrum sensing in cognitive radio networks based on direction of arrival estimation model and generalised autoregressive conditional heteroscedasticity noise modelling,” IET Commun., vol. 8, no. 18, pp. 3271-3279, 2014.[47] N. C. Anand, C. Scoglio, and B. Natarajan, “GARCH-non-linear time series model for traffic modeling and prediction,” in IEEE Network Operations and Management Symposium, 2008.[48] S. Kim, “Forecasting internet traffic by using seasonal GARCH models,” J. Commun. Networks, vol. 13, no. 6, pp. 621-624, 2011.[49] Q. Tran, Z. Ma, H. Li, L. Hao, and Q. Trinh, “A Multiplicative Seasonal ARIMA/GARCH Model in EVN Traffic Prediction,” Int. J. Commun. Netw. Syst. Sci., vol. 8, pp. 43-49, 2015[50] Y. Zhanga, D. Fayb, L. Kilmartina, and A. Mooreb, “A Garch-based adaptive playout delay algorithm for VoIP,” Comput. Networks, vol. 54, no. 17, pp. 3108-3122, 2010.[51] R. Engle, “The Use of ARCH/GARCH Models in Applied Econometrics,” J. Econ. Perspect., vol. 15, no. 4, pp. 157-168, 1982.[52] T. Bollersleva, “Generalized autoregressive conditional heteroskedasticity,” J. Econom., vol. 31(3), pp. 307-327, 1986.[53] A. Chinomona, “Time Series Modelling with Application to South African Inflation Data,” Master Sci. Stat. Univ. KwaZulu-Natal, 2009.[54] N. Edward, “Modelling and Forecasting Using Time Series Garch Models: An Application of Tanzania Inflation Rate Data,” M.S. thesis, University of Dar es-Salaam, Tanzania, 2011.[55] I. Talke, “Modelling volatility in time series data,” M.S. thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2003.[56] C. Gourieroux and A. Monfort, Time Series and Dynamic Models (1st ed.). Cambridge: Cambridge University Press, 1997.[57] W. Bednarczyk and P. Gajewski, “Hidden Markov Models Based Channel Status Prediction for Cognitive Radio Networks,” in PIERS Proceedings, 2015.[58] T. Black, B. Kerans, and A. Kerans, “Implementation of Hidden Markov Model spectrum prediction algorithm,” in 2012 International Symposium on Communications and Information Technologies, ISCIT 2012, pp. 280-283, 2012.[59] V. Tumuluru, P. Wang, and D. Niyato, “Channel status prediction for cognitive radio networks,” Wirel. Commun. Mob. Comput., vol. 12, no. 10, pp. 862-874, 2012.[60] L. Yang, Y. Dong, H. Zhang, H. Zhao, H. Shi, and X. Zhao, “Spectrum usage prediction based on high-order markov model for cognitive radio networks,” in The Int. Conf. on Comput. and Inform. Technology, 2010.[61] M. López-Benítez and F. Casadevall, “Statistical Prediction of Spectrum Occupancy Perception in Dynamic Spectrum Access Networks,” in 2011 IEEE International Conference on Communications (ICC), 2011.[62] C. Erlwein, “Applications of hidden Markov models in financial modelling,” Ph.D. dissertation, Brunel University, London, 2008.[63] J. Norris, Markov Chains (1st ed.). Cambridge: Cambridge University Press, 1997.[64] J. D. Hamilton, Time series analysis. Vol. 2. Princeton: Princeton University Press, 1994.[65] M. Zakai, “On the optimal filtering of diffusion processes,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 11, no. 3, pp. 230-243, 1969.[66] R. Elliott, L. Aggoun, and J. Moore, Hidden Markov Models Estimation and Control (Vol. 29). New York: Springer-Verlag, 1995.[67] J. Hull and A. White, “Pricing Interest-Rate-Derivative Securities,” Rev. Financ. Stud., vol. 3, no. 4, pp. 573-592, 1990.[68] C. Yu, Y. He, and T. Quan, “Frequency Spectrum Prediction Method Based on EMD and SVR,” in The Intelligent Systems Design and Applications, 2008.[69] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” in The Proceedings of the Royal Society, 1998.[70] I. Magrin and R. Baraniuk, “Empirical Mode Decomposition based time-frequency attributes,” in The SEG Meeting, 1999.[71] H. Zheng and L. Cao, “Device-centric spectrum management,” in IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 56-65, 2005.[72] F. Dufrenois and D. Hamad, “Fuzzy weighted support vector regression for multiple linear model estimation : application to object tracking in image sequences.,” in Paper presented at the International Joint Conference on Neural Networks, 2007.[73] D. Li and Y. Cao, “SOFM based support vector regression model for prediction and its application in power system transient stability forecasting,” in The International Power Engineering Conference, 2005.[74] X. Bai, S., Zhou and F. Xu, “‘Soft decision’ spectrum prediction based on backpropagation neural networks,” in International Conference on Computing, Management and Telecommunications, 2014.[75] S. Bai, X. Zhou, and F. Xu, “Spectrum prediction based on improved-back-propagation neural networks,” in The International Conference on Natural Computation, 2015.[76] L. Kunwei, Z. Hangsheng, Z. Jianzhao, L. Cao, and L. Menglin, “A spectrum prediction approach based on neural networks optimized by genetic algorithm in cognitive radio networks,” in The International Conference on Wireless Communications, Networking and Mobile Computing, 2014.[77] S. Iliya, E. Goodyer, M. Gongora, J. Shell, and J. Gow, “Optimized Artificial Neural Network Using Differential Evolution for Prediction of RF Power in VHF / UHF TV and GSM 900 Bands for Cognitive Radio Networks,” in 2014 14th UK Workshop on Computational Intelligence (UKCI), 2014, pp. 1-6.[78] Y. Chen and H.-S. Oh, “Spectrum measurement modelling and prediction based on wavelets,” IET Commun., vol. 10, no. 16, pp. 2192-2198, 2016.[79] Q. Zhang and A. Benveniste, “IEEE Transactions on Neural Networks,” Wavelet networks, vol. 3, no. 6, pp. 889-898, 1992.[80] I. Daubechies, “Ten Lectures on Wavelets (8th ed.),” Philadelphia SIAM, 2004.[81] D. Veitch, “Wavelet Neural Networks and their application in the study of dynamical systems,” Ph.D. dissertation, University of York, York, UK, 2005.[82] C. M. Akujuobi, E. Awada, M. Sadiku, and W. Ali, “Wavelet-based differential nonlinearity testing of mixed signal system ADCs,” Pap. Present. IEEE Proc. SoutheastCon, Richmond, 2007.[83] L. Chun-Lin, “A tutorial of the wavelet transform,” in NTUEE, 2010.[84] E. Frimpong and P. Okyere, “Monthly energy consumption forecasting using wavelet analysis and radial basis function neural network,” J. Sci. Technol., vol. 30, no. 2, pp. 157-163, 2010.[85] J. Li, J. Cheng, J. Shi, and F. Huang, “Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement,” Adv. Comput. Sci. Inf. Eng., vol. 2, pp. 553-558, 2012.[86] R. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting with Exponential Smoothing: The State Space Approach (1st ed.). Berlin: Springer-Verlag, 2008.[87] D. A. Dickey and W. A. Fuller, “Distribution of estimators for autoregressive time series with a unit root,” J. Amer. Stat. Assoc, vol. 74, no. 366, pp. 427-431, 1979.[88] H. Bozdogan, “Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions,” Psychometrika, vol. 52(3), pp. 345- 370, 1987.[89] L. Debnath and F. Shah, Wavelet Transforms and Their Applications (2nd ed). New York: Birkhäuser, 2014.Hernández Suárez, César Augusto [0000-0001-9409-8341]Pedraza Martínez, Luis FernandoHernandez Suarez, Cesar AugustoSalgado Franco, Lizet CamilaLICENSElicense.txtlicense.txttext/plain; charset=utf-87167http://repository.udistrital.edu.co/bitstream/11349/32625/3/license.txt997daf6c648c962d566d7b082dac908dMD53open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repository.udistrital.edu.co/bitstream/11349/32625/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessORIGINALMODELO-pre-5taco.pdfMODELO-pre-5taco.pdfModelo de predicciónapplication/pdf31883607http://repository.udistrital.edu.co/bitstream/11349/32625/1/MODELO-pre-5taco.pdfc2912a3e209729ada73506336a1be839MD51open accessTHUMBNAILMODELO-pre-5taco.pdf.jpgMODELO-pre-5taco.pdf.jpgIM Thumbnailimage/jpeg1002http://repository.udistrital.edu.co/bitstream/11349/32625/4/MODELO-pre-5taco.pdf.jpg4572bb151b1666679e2f32ef58626924MD54open access11349/32625oai:repository.udistrital.edu.co:11349/326252024-04-08 16:18:42.254open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK