Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
Entre los objetos matemáticos que componen el análisis matemático sobresale el Teorema Fundamental del Cálculo (TFC). Sin embargo, el proceso de enseñanza y aprendizaje del TFC tiene dificultades. Por ejemplo, algunos docentes presentan limitaciones al enseñarlo, porque tienen un bajo conocimiento c...
- Autores:
-
Muñoz Villate, Weimar
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/39851
- Acceso en línea:
- http://hdl.handle.net/11349/39851
- Palabra clave:
- Teorema Fundamental del cálculo
Newton
Leibniz
Software educativo
Enfoque ontosemiótico
Doctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicas
Teorema fundamental del cálculo (TFC)
Educación matemática
Historia de las matemáticas
Recursos tecnológicos en la enseñanza
Fundamental theorem of calculus
Newton
Leibniz
Ontosemiotical approach
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UDISTRITA2_04119fb704a57e1d67c14447cafe5b0f |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/39851 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.none.fl_str_mv |
Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos |
dc.title.titleenglish.none.fl_str_mv |
Articulation of arguments of the fundamental theorem of calculus of Newton and Leibniz for its teaching in the training of engineers with the use of technological resources |
title |
Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos |
spellingShingle |
Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos Teorema Fundamental del cálculo Newton Leibniz Software educativo Enfoque ontosemiótico Doctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicas Teorema fundamental del cálculo (TFC) Educación matemática Historia de las matemáticas Recursos tecnológicos en la enseñanza Fundamental theorem of calculus Newton Leibniz Ontosemiotical approach |
title_short |
Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos |
title_full |
Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos |
title_fullStr |
Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos |
title_full_unstemmed |
Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos |
title_sort |
Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos |
dc.creator.fl_str_mv |
Muñoz Villate, Weimar |
dc.contributor.advisor.none.fl_str_mv |
Leon Corredor, Olga Lucia |
dc.contributor.author.none.fl_str_mv |
Muñoz Villate, Weimar |
dc.contributor.orcid.none.fl_str_mv |
Leon Corredor Olga Lucia [0000-0003-4373-8630] |
dc.subject.none.fl_str_mv |
Teorema Fundamental del cálculo Newton Leibniz Software educativo Enfoque ontosemiótico |
topic |
Teorema Fundamental del cálculo Newton Leibniz Software educativo Enfoque ontosemiótico Doctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicas Teorema fundamental del cálculo (TFC) Educación matemática Historia de las matemáticas Recursos tecnológicos en la enseñanza Fundamental theorem of calculus Newton Leibniz Ontosemiotical approach |
dc.subject.lemb.none.fl_str_mv |
Doctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicas Teorema fundamental del cálculo (TFC) Educación matemática Historia de las matemáticas Recursos tecnológicos en la enseñanza |
dc.subject.keyword.none.fl_str_mv |
Fundamental theorem of calculus Newton Leibniz Ontosemiotical approach |
description |
Entre los objetos matemáticos que componen el análisis matemático sobresale el Teorema Fundamental del Cálculo (TFC). Sin embargo, el proceso de enseñanza y aprendizaje del TFC tiene dificultades. Por ejemplo, algunos docentes presentan limitaciones al enseñarlo, porque tienen un bajo conocimiento conceptual, incluso a veces procedimental, de la integral definida; tampoco saben cómo mejorar sus ambientes de enseñanza; ni crear secuencias didácticas que busquen la mejora de la comprensión del teorema; o por no considerar la complejidad de los objetos matemáticos que lo componen. Para los estudiantes los obstáculos con el TFC van desde tener problemas al comprender nociones matemáticas previas (continuidad, diferenciabilidad, razón de cambio, etc.) hasta entender que ∫_a^x▒f(t)dt es una función que depende de x. Esta tesis doctoral muestra que la historia de las matemáticas aún es una fuente de recursos, que ambientados con softwares educativos idóneos y enmarcados en un enfoque didáctico adecuado, permiten el diseño de tareas para los estudiantes universitarios. |
publishDate |
2023 |
dc.date.created.none.fl_str_mv |
2023-11-03 |
dc.date.accessioned.none.fl_str_mv |
2024-08-17T23:40:34Z |
dc.date.available.none.fl_str_mv |
2024-08-17T23:40:34Z |
dc.type.spa.fl_str_mv |
doctoralThesis |
dc.type.degree.spa.fl_str_mv |
Investigación-Innovación |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
format |
http://purl.org/coar/resource_type/c_db06 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/39851 |
url |
http://hdl.handle.net/11349/39851 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional Attribution-NonCommercial-NoDerivatives 4.0 Internacional Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/3dd44097-a36f-4516-9354-765e4c3bda2b/download https://repository.udistrital.edu.co/bitstreams/cbb8500d-5a1f-4bac-892f-3b2df7041ce1/download https://repository.udistrital.edu.co/bitstreams/265d6667-f62f-47a7-b10d-1bbd82eef07d/download https://repository.udistrital.edu.co/bitstreams/82160bc9-c57e-4f75-9cff-d5195557c885/download https://repository.udistrital.edu.co/bitstreams/72ff8484-0213-4a0e-b971-7de2522000dd/download https://repository.udistrital.edu.co/bitstreams/d422a866-f30d-4812-839c-1b8ed3d253e7/download |
bitstream.checksum.fl_str_mv |
5a437b0af72a35e55651f82b983e1695 292ce0aefbd4f8d625e4a9ed48add885 4460e5956bc1d1639be9ae6146a50347 997daf6c648c962d566d7b082dac908d 3556d93141073a2556f3dd9cf9bedabd 4b3c5678c708b193e12bbf22ca68b0d0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1828165792337756160 |
spelling |
Leon Corredor, Olga LuciaMuñoz Villate, WeimarLeon Corredor Olga Lucia [0000-0003-4373-8630]2024-08-17T23:40:34Z2024-08-17T23:40:34Z2023-11-03http://hdl.handle.net/11349/39851Entre los objetos matemáticos que componen el análisis matemático sobresale el Teorema Fundamental del Cálculo (TFC). Sin embargo, el proceso de enseñanza y aprendizaje del TFC tiene dificultades. Por ejemplo, algunos docentes presentan limitaciones al enseñarlo, porque tienen un bajo conocimiento conceptual, incluso a veces procedimental, de la integral definida; tampoco saben cómo mejorar sus ambientes de enseñanza; ni crear secuencias didácticas que busquen la mejora de la comprensión del teorema; o por no considerar la complejidad de los objetos matemáticos que lo componen. Para los estudiantes los obstáculos con el TFC van desde tener problemas al comprender nociones matemáticas previas (continuidad, diferenciabilidad, razón de cambio, etc.) hasta entender que ∫_a^x▒f(t)dt es una función que depende de x. Esta tesis doctoral muestra que la historia de las matemáticas aún es una fuente de recursos, que ambientados con softwares educativos idóneos y enmarcados en un enfoque didáctico adecuado, permiten el diseño de tareas para los estudiantes universitarios.Among the mathematical objects that make up mathematical analysis, the Fundamental Theorem of Calculus (FTC) stands out. However, the teaching and learning process of the FTC has difficulties. For example, some teachers present limitations when teaching it, because they have a low conceptual knowledge, sometimes even procedural, of the definite integral; they do not know how to improve their teaching environments; nor do they know how to create didactical sequences in order to improve the understanding of the theorem; or because they do not consider the complexity of the mathematical objects that compose it. For students the obstacles with the FTC range from having problems understanding previous mathematical notions (continuity, differentiability, ratio of change, etc.) to understanding that∫_a^x▒f(t)dt is a function that depends on x. This doctoral thesis shows that the history of mathematics is still a source of resources, which set with suitable educational software and framed in an appropriate didactical approach, allow the design of tasks for university students.pdfspaAttribution-NonCommercial-NoDerivatives 4.0 InternacionalAttribution-NonCommercial-NoDerivatives 4.0 InternacionalAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Teorema Fundamental del cálculoNewtonLeibnizSoftware educativoEnfoque ontosemióticoDoctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicasTeorema fundamental del cálculo (TFC)Educación matemáticaHistoria de las matemáticasRecursos tecnológicos en la enseñanzaFundamental theorem of calculusNewtonLeibnizOntosemiotical approachArticulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicosArticulation of arguments of the fundamental theorem of calculus of Newton and Leibniz for its teaching in the training of engineers with the use of technological resourcesdoctoralThesisInvestigación-Innovacióninfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06ORIGINALMuñozVillateWeimar2023.pdfMuñozVillateWeimar2023.pdfTesís de doctoradoapplication/pdf28525669https://repository.udistrital.edu.co/bitstreams/3dd44097-a36f-4516-9354-765e4c3bda2b/download5a437b0af72a35e55651f82b983e1695MD51Licencia de uso y publicacion.pdfLicencia de uso y publicacion.pdfLicencia de uso y autorizaciónapplication/pdf617810https://repository.udistrital.edu.co/bitstreams/cbb8500d-5a1f-4bac-892f-3b2df7041ce1/download292ce0aefbd4f8d625e4a9ed48add885MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.udistrital.edu.co/bitstreams/265d6667-f62f-47a7-b10d-1bbd82eef07d/download4460e5956bc1d1639be9ae6146a50347MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/82160bc9-c57e-4f75-9cff-d5195557c885/download997daf6c648c962d566d7b082dac908dMD55THUMBNAILMuñozVillateWeimar2023.pdf.jpgMuñozVillateWeimar2023.pdf.jpgIM Thumbnailimage/jpeg3680https://repository.udistrital.edu.co/bitstreams/72ff8484-0213-4a0e-b971-7de2522000dd/download3556d93141073a2556f3dd9cf9bedabdMD56Licencia de uso y publicacion.pdf.jpgLicencia de uso y publicacion.pdf.jpgIM Thumbnailimage/jpeg12194https://repository.udistrital.edu.co/bitstreams/d422a866-f30d-4812-839c-1b8ed3d253e7/download4b3c5678c708b193e12bbf22ca68b0d0MD5711349/39851oai:repository.udistrital.edu.co:11349/398512024-12-22 01:08:28.418http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |