Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos

Entre los objetos matemáticos que componen el análisis matemático sobresale el Teorema Fundamental del Cálculo (TFC). Sin embargo, el proceso de enseñanza y aprendizaje del TFC tiene dificultades. Por ejemplo, algunos docentes presentan limitaciones al enseñarlo, porque tienen un bajo conocimiento c...

Full description

Autores:
Muñoz Villate, Weimar
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/39851
Acceso en línea:
http://hdl.handle.net/11349/39851
Palabra clave:
Teorema Fundamental del cálculo
Newton
Leibniz
Software educativo
Enfoque ontosemiótico
Doctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicas
Teorema fundamental del cálculo (TFC)
Educación matemática
Historia de las matemáticas
Recursos tecnológicos en la enseñanza
Fundamental theorem of calculus
Newton
Leibniz
Ontosemiotical approach
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UDISTRITA2_04119fb704a57e1d67c14447cafe5b0f
oai_identifier_str oai:repository.udistrital.edu.co:11349/39851
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.none.fl_str_mv Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
dc.title.titleenglish.none.fl_str_mv Articulation of arguments of the fundamental theorem of calculus of Newton and Leibniz for its teaching in the training of engineers with the use of technological resources
title Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
spellingShingle Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
Teorema Fundamental del cálculo
Newton
Leibniz
Software educativo
Enfoque ontosemiótico
Doctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicas
Teorema fundamental del cálculo (TFC)
Educación matemática
Historia de las matemáticas
Recursos tecnológicos en la enseñanza
Fundamental theorem of calculus
Newton
Leibniz
Ontosemiotical approach
title_short Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
title_full Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
title_fullStr Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
title_full_unstemmed Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
title_sort Articulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicos
dc.creator.fl_str_mv Muñoz Villate, Weimar
dc.contributor.advisor.none.fl_str_mv Leon Corredor, Olga Lucia
dc.contributor.author.none.fl_str_mv Muñoz Villate, Weimar
dc.contributor.orcid.none.fl_str_mv Leon Corredor Olga Lucia [0000-0003-4373-8630]
dc.subject.none.fl_str_mv Teorema Fundamental del cálculo
Newton
Leibniz
Software educativo
Enfoque ontosemiótico
topic Teorema Fundamental del cálculo
Newton
Leibniz
Software educativo
Enfoque ontosemiótico
Doctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicas
Teorema fundamental del cálculo (TFC)
Educación matemática
Historia de las matemáticas
Recursos tecnológicos en la enseñanza
Fundamental theorem of calculus
Newton
Leibniz
Ontosemiotical approach
dc.subject.lemb.none.fl_str_mv Doctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicas
Teorema fundamental del cálculo (TFC)
Educación matemática
Historia de las matemáticas
Recursos tecnológicos en la enseñanza
dc.subject.keyword.none.fl_str_mv Fundamental theorem of calculus
Newton
Leibniz
Ontosemiotical approach
description Entre los objetos matemáticos que componen el análisis matemático sobresale el Teorema Fundamental del Cálculo (TFC). Sin embargo, el proceso de enseñanza y aprendizaje del TFC tiene dificultades. Por ejemplo, algunos docentes presentan limitaciones al enseñarlo, porque tienen un bajo conocimiento conceptual, incluso a veces procedimental, de la integral definida; tampoco saben cómo mejorar sus ambientes de enseñanza; ni crear secuencias didácticas que busquen la mejora de la comprensión del teorema; o por no considerar la complejidad de los objetos matemáticos que lo componen. Para los estudiantes los obstáculos con el TFC van desde tener problemas al comprender nociones matemáticas previas (continuidad, diferenciabilidad, razón de cambio, etc.) hasta entender que ∫_a^x▒f(t)dt es una función que depende de x. Esta tesis doctoral muestra que la historia de las matemáticas aún es una fuente de recursos, que ambientados con softwares educativos idóneos y enmarcados en un enfoque didáctico adecuado, permiten el diseño de tareas para los estudiantes universitarios.
publishDate 2023
dc.date.created.none.fl_str_mv 2023-11-03
dc.date.accessioned.none.fl_str_mv 2024-08-17T23:40:34Z
dc.date.available.none.fl_str_mv 2024-08-17T23:40:34Z
dc.type.spa.fl_str_mv doctoralThesis
dc.type.degree.spa.fl_str_mv Investigación-Innovación
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/39851
url http://hdl.handle.net/11349/39851
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/3dd44097-a36f-4516-9354-765e4c3bda2b/download
https://repository.udistrital.edu.co/bitstreams/cbb8500d-5a1f-4bac-892f-3b2df7041ce1/download
https://repository.udistrital.edu.co/bitstreams/265d6667-f62f-47a7-b10d-1bbd82eef07d/download
https://repository.udistrital.edu.co/bitstreams/82160bc9-c57e-4f75-9cff-d5195557c885/download
https://repository.udistrital.edu.co/bitstreams/72ff8484-0213-4a0e-b971-7de2522000dd/download
https://repository.udistrital.edu.co/bitstreams/d422a866-f30d-4812-839c-1b8ed3d253e7/download
bitstream.checksum.fl_str_mv 5a437b0af72a35e55651f82b983e1695
292ce0aefbd4f8d625e4a9ed48add885
4460e5956bc1d1639be9ae6146a50347
997daf6c648c962d566d7b082dac908d
3556d93141073a2556f3dd9cf9bedabd
4b3c5678c708b193e12bbf22ca68b0d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1828165792337756160
spelling Leon Corredor, Olga LuciaMuñoz Villate, WeimarLeon Corredor Olga Lucia [0000-0003-4373-8630]2024-08-17T23:40:34Z2024-08-17T23:40:34Z2023-11-03http://hdl.handle.net/11349/39851Entre los objetos matemáticos que componen el análisis matemático sobresale el Teorema Fundamental del Cálculo (TFC). Sin embargo, el proceso de enseñanza y aprendizaje del TFC tiene dificultades. Por ejemplo, algunos docentes presentan limitaciones al enseñarlo, porque tienen un bajo conocimiento conceptual, incluso a veces procedimental, de la integral definida; tampoco saben cómo mejorar sus ambientes de enseñanza; ni crear secuencias didácticas que busquen la mejora de la comprensión del teorema; o por no considerar la complejidad de los objetos matemáticos que lo componen. Para los estudiantes los obstáculos con el TFC van desde tener problemas al comprender nociones matemáticas previas (continuidad, diferenciabilidad, razón de cambio, etc.) hasta entender que ∫_a^x▒f(t)dt es una función que depende de x. Esta tesis doctoral muestra que la historia de las matemáticas aún es una fuente de recursos, que ambientados con softwares educativos idóneos y enmarcados en un enfoque didáctico adecuado, permiten el diseño de tareas para los estudiantes universitarios.Among the mathematical objects that make up mathematical analysis, the Fundamental Theorem of Calculus (FTC) stands out. However, the teaching and learning process of the FTC has difficulties. For example, some teachers present limitations when teaching it, because they have a low conceptual knowledge, sometimes even procedural, of the definite integral; they do not know how to improve their teaching environments; nor do they know how to create didactical sequences in order to improve the understanding of the theorem; or because they do not consider the complexity of the mathematical objects that compose it. For students the obstacles with the FTC range from having problems understanding previous mathematical notions (continuity, differentiability, ratio of change, etc.) to understanding that∫_a^x▒f(t)dt is a function that depends on x. This doctoral thesis shows that the history of mathematics is still a source of resources, which set with suitable educational software and framed in an appropriate didactical approach, allow the design of tasks for university students.pdfspaAttribution-NonCommercial-NoDerivatives 4.0 InternacionalAttribution-NonCommercial-NoDerivatives 4.0 InternacionalAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Teorema Fundamental del cálculoNewtonLeibnizSoftware educativoEnfoque ontosemióticoDoctorado interinstitucional en educación con énfasis en educación matemática -- Tesis y disertaciones académicasTeorema fundamental del cálculo (TFC)Educación matemáticaHistoria de las matemáticasRecursos tecnológicos en la enseñanzaFundamental theorem of calculusNewtonLeibnizOntosemiotical approachArticulación de argumentos del teorema fundamental del cálculo de Newton y de Leibniz para su enseñanza en la formación de ingenieros con el uso de recursos tecnológicosArticulation of arguments of the fundamental theorem of calculus of Newton and Leibniz for its teaching in the training of engineers with the use of technological resourcesdoctoralThesisInvestigación-Innovacióninfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06ORIGINALMuñozVillateWeimar2023.pdfMuñozVillateWeimar2023.pdfTesís de doctoradoapplication/pdf28525669https://repository.udistrital.edu.co/bitstreams/3dd44097-a36f-4516-9354-765e4c3bda2b/download5a437b0af72a35e55651f82b983e1695MD51Licencia de uso y publicacion.pdfLicencia de uso y publicacion.pdfLicencia de uso y autorizaciónapplication/pdf617810https://repository.udistrital.edu.co/bitstreams/cbb8500d-5a1f-4bac-892f-3b2df7041ce1/download292ce0aefbd4f8d625e4a9ed48add885MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.udistrital.edu.co/bitstreams/265d6667-f62f-47a7-b10d-1bbd82eef07d/download4460e5956bc1d1639be9ae6146a50347MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/82160bc9-c57e-4f75-9cff-d5195557c885/download997daf6c648c962d566d7b082dac908dMD55THUMBNAILMuñozVillateWeimar2023.pdf.jpgMuñozVillateWeimar2023.pdf.jpgIM Thumbnailimage/jpeg3680https://repository.udistrital.edu.co/bitstreams/72ff8484-0213-4a0e-b971-7de2522000dd/download3556d93141073a2556f3dd9cf9bedabdMD56Licencia de uso y publicacion.pdf.jpgLicencia de uso y publicacion.pdf.jpgIM Thumbnailimage/jpeg12194https://repository.udistrital.edu.co/bitstreams/d422a866-f30d-4812-839c-1b8ed3d253e7/download4b3c5678c708b193e12bbf22ca68b0d0MD5711349/39851oai:repository.udistrital.edu.co:11349/398512024-12-22 01:08:28.418http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK