Sobre las matrices de Pascal
Este trabajo desarrolla en forma explícita, cuatro demostraciones encontradas en el artículo "Pascal Matrices"de Alan Edelman y Gilbert Strang, para la multiplicación de matrices de Pascal S=LU. La primera usa la definición de multiplicación de matrices, la segunda el conteo de caminos de...
- Autores:
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2015
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/2479
- Acceso en línea:
- http://hdl.handle.net/11349/2479
- Palabra clave:
- Matrices
Pascal
Simétrica
Binomial
Matemáticas - Tesis y disertaciones académicas
Matemáticas - Enseñanza
Matrices (Matemáticas)
Matrices
Pascal
Symmetric
Binomial
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UDISTRITA2_0328c45fef7770e286cd8f2e99b5b566 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/2479 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sobre las matrices de Pascal |
dc.title.titleenglish.spa.fl_str_mv |
On Pascal matrices |
title |
Sobre las matrices de Pascal |
spellingShingle |
Sobre las matrices de Pascal Matrices Pascal Simétrica Binomial Matemáticas - Tesis y disertaciones académicas Matemáticas - Enseñanza Matrices (Matemáticas) Matrices Pascal Symmetric Binomial |
title_short |
Sobre las matrices de Pascal |
title_full |
Sobre las matrices de Pascal |
title_fullStr |
Sobre las matrices de Pascal |
title_full_unstemmed |
Sobre las matrices de Pascal |
title_sort |
Sobre las matrices de Pascal |
dc.contributor.advisor.spa.fl_str_mv |
Cifuentes Vargas, Verónica |
dc.subject.spa.fl_str_mv |
Matrices Pascal Simétrica Binomial |
topic |
Matrices Pascal Simétrica Binomial Matemáticas - Tesis y disertaciones académicas Matemáticas - Enseñanza Matrices (Matemáticas) Matrices Pascal Symmetric Binomial |
dc.subject.lemb.spa.fl_str_mv |
Matemáticas - Tesis y disertaciones académicas Matemáticas - Enseñanza Matrices (Matemáticas) |
dc.subject.keyword.spa.fl_str_mv |
Matrices Pascal Symmetric Binomial |
description |
Este trabajo desarrolla en forma explícita, cuatro demostraciones encontradas en el artículo "Pascal Matrices"de Alan Edelman y Gilbert Strang, para la multiplicación de matrices de Pascal S=LU. La primera usa la definición de multiplicación de matrices, la segunda el conteo de caminos de un grafo dirigido, la tercera, la multiplicación de matrices de eliminación y la última el concepto de matrices infinitas y su producto con series convergentes como entradas. |
publishDate |
2015 |
dc.date.accessioned.none.fl_str_mv |
2015-11-25T20:16:39Z |
dc.date.available.none.fl_str_mv |
2015-11-25T20:16:39Z |
dc.date.created.spa.fl_str_mv |
2015-10-28 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/2479 |
url |
http://hdl.handle.net/11349/2479 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
http://repository.udistrital.edu.co/bitstream/11349/2479/6/VillanuevaD%c3%adazHugoAlejandro2015.pdf.jpg http://repository.udistrital.edu.co/bitstream/11349/2479/1/VillanuevaD%c3%adazHugoAlejandro2015.pdf http://repository.udistrital.edu.co/bitstream/11349/2479/2/license_url http://repository.udistrital.edu.co/bitstream/11349/2479/3/license_text http://repository.udistrital.edu.co/bitstream/11349/2479/4/license_rdf http://repository.udistrital.edu.co/bitstream/11349/2479/5/license.txt |
bitstream.checksum.fl_str_mv |
cc273dca9474c9f4c48094b726516db9 989d0fc24b044b14423931d83714be0e 924993ce0b3ba389f79f32a1b2735415 54dd59d40230fe99c6f8f5992623f9e2 b92763cfc0af52c7c868455edfaf3266 b204d61d4cc8bf0ee3a2b0e84c5755dd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Distrital - RIUD |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1803712638989893632 |
spelling |
Cifuentes Vargas, VerónicaVillanueva Díaz, Hugo Alejandro2015-11-25T20:16:39Z2015-11-25T20:16:39Z2015-10-28http://hdl.handle.net/11349/2479Este trabajo desarrolla en forma explícita, cuatro demostraciones encontradas en el artículo "Pascal Matrices"de Alan Edelman y Gilbert Strang, para la multiplicación de matrices de Pascal S=LU. La primera usa la definición de multiplicación de matrices, la segunda el conteo de caminos de un grafo dirigido, la tercera, la multiplicación de matrices de eliminación y la última el concepto de matrices infinitas y su producto con series convergentes como entradas.This work develops explicitly four proofs localated in the paper "Pascal Matrices" of Alan Edelman and Gilbert Strang, for the Pascal matrices multiplication S=LU. The first one uses the matrices multiplication definition. The second one the count of paths on a directed graph, the third one the elimination matrices multiplication and the last one the infinite matices concept and their product with convergent series as entries.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2MatricesPascalSimétricaBinomialMatemáticas - Tesis y disertaciones académicasMatemáticas - EnseñanzaMatrices (Matemáticas)MatricesPascalSymmetricBinomialSobre las matrices de PascalOn Pascal matricesinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILVillanuevaDíazHugoAlejandro2015.pdf.jpgVillanuevaDíazHugoAlejandro2015.pdf.jpgIM Thumbnailimage/jpeg5822http://repository.udistrital.edu.co/bitstream/11349/2479/6/VillanuevaD%c3%adazHugoAlejandro2015.pdf.jpgcc273dca9474c9f4c48094b726516db9MD56open accessORIGINALVillanuevaDíazHugoAlejandro2015.pdfVillanuevaDíazHugoAlejandro2015.pdfTesis de Gradoapplication/pdf674589http://repository.udistrital.edu.co/bitstream/11349/2479/1/VillanuevaD%c3%adazHugoAlejandro2015.pdf989d0fc24b044b14423931d83714be0eMD51metadata only accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repository.udistrital.edu.co/bitstream/11349/2479/2/license_url924993ce0b3ba389f79f32a1b2735415MD52open accesslicense_textlicense_texttext/html; charset=utf-821597http://repository.udistrital.edu.co/bitstream/11349/2479/3/license_text54dd59d40230fe99c6f8f5992623f9e2MD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-823748http://repository.udistrital.edu.co/bitstream/11349/2479/4/license_rdfb92763cfc0af52c7c868455edfaf3266MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-85896http://repository.udistrital.edu.co/bitstream/11349/2479/5/license.txtb204d61d4cc8bf0ee3a2b0e84c5755ddMD55open access11349/2479oai:repository.udistrital.edu.co:11349/24792023-10-03 10:31:57.082metadata only accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyAgREUgQ09OVEVOSURPUyBFTiBFTCBSRVBPU0lUT1JJTyBJTlNUSVRVQ0lPTkFMIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTApUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgUklVRC4KCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCAgY29uZmllcm8gKGVyaW1vcykgYSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB1bmEgbGljZW5jaWEgcGFyYSB1c28gIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSAgaW50ZWdyYXLDoSAgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBhY3VlcmRvIGEgbGFzIHNpZ3VpZW50ZXMgcmVnbGFzLCAgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpIEVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSAgZW4gcXVlIHNlIGluY2x1eWEgIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBoYXN0YSAgcG9yIHVuIHBsYXpvIGRlICBkaWV6ICgxMCkgIEHDsW9zLCAgcHJvcnJvZ2FibGUgIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyAgbGEgY3VhbCBwb2Ryw6EgICBkYXJzZSAgcG9yIHRlcm1pbmFkYSAgcHJldmlhICBzb2xpY2l0dWQgICBhIGxhIFVuaXZlcnNpZGFkIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvICBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLiAgCgpiKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSAgcG9yIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsICBMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsICBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zICBkaWZlcmVudGVzIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHVuYSB2ZXogZWwob3MpIGF1dG9yKGVzKSAgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUmVwb3NpdG9yaW8gZGUgbGEgVW5pdmVyc2lkYWQsIGRhZG8gcXVlICBsYSBtaXNtYSBzZXLDoSBwdWJsaWNhZGEgZW4gIEludGVybmV0LiAKCmMpIExhIGF1dG9yaXphY2nDs24gc2UgaGFjZSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgbG9zIGF1dG9yZXMgcmVudW5jaWFuIGEgcmVjaWJpciBiZW5lZmljaW8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSAgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKSBMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgc29uICBvYnJhKHMpIG9yaWdpbmFsKGVzKSBzb2JyZSBsYSAgY3VhbChlcykgIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zICBkZXJlY2hvcyBkZSBhdXRvciwgYXN1bWVuIHRvdGFsIHJlc3BvbnNhYmlsaWRhZCBwb3IgZWwgY29udGVuaWRvIGRlIHN1IG9icmEgYW50ZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGFudGUgdGVyY2Vyb3MuIEVuIHRvZG8gY2FzbyBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkgTGEgIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHBvZHLDoSAgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgpmKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgY29udmVydGlyIGxhIG9icmEgIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluICBkZSBzdSBwcmVzZXJ2YWNpw7NuIGVuIGVsIHRpZW1wbyBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBsYSBkZSBzdXMgcHLDs3Jyb2dhcy4KQ29uIGJhc2UgZW4gbG8gYW50ZXJpb3IgYXV0b3JpesOzIGxhIHB1YmxpY2FjacOzbiB5IGNvbnN1bHRhIGRlIGxhIG9icmEgIHRpdHVsYWRhIF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KCiBBIGZhdm9yIGRlbCAgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5ICBkZSBzdXMgdXN1YXJpb3MsICAgY3V5byhzKSAgYXV0b3IoZXMpIHNvbjogCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCgphKSBBdXRvcml6byBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGF1dG9yaXphZG9zIGVuIGxvcyBsaXRlcmFsZXMgYW50ZXJpb3JlcywgIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgZW4gbGFzIOKAnENvbmRpY2lvbmVzIGRlIHVzbyBkZSBlc3RyaWN0byBjdW1wbGltaWVudG/igJ0gZGUgbG9zIHJlY3Vyc29zIHB1YmxpY2Fkb3MgZW4gUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBSSVVELCBjdXlvIHRleHRvIGNvbXBsZXRvIHNlIHB1ZWRlIGNvbnN1bHRhciBlbiBodHRwOi8vcmVwb3NpdG9yeS51ZGlzdHJpdGFsLmVkdS5jby8KCmIpIENvbm96Y28geSBhY2VwdG8gcXVlIG90b3JnbyB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIG9idGVuaWRvIHVuYSBjb3BpYS4KCmMpICBNYW5pZmllc3RvIG1pIHRvdGFsIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSB1c28geSBwdWJsaWNhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBxdWUgc2UgZGVzY3JpYmVuIHkgZXhwbGljYW4gZW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvLgoKZykgUXVlIGNvbm96Y28gICBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyByZWxhdGl2byBhIHByb3BpZWRhZCAgaW50ZWxlY3R1YWwgcmVndWxhZGEgcG9yIGVsIEFjdWVyZG8gMDA0IGRlIDIwMTIgZGVsIENTVSwgQWN1ZXJkbyAwMjMgZGUgMjAxMiBkZWwgQ1NVIHNvYnJlIFBvbMOtdGljYSBFZGl0b3JpYWwsIEFjdWVyZG8gMDI2ICBkZWwgMzEgZGUganVsaW8gZGUgMjAxMiBzb2JyZSBlbCBwcm9jZWRpbWllbnRvIHBhcmEgbGEgcHVibGljYWNpw7NuIGRlIHRlc2lzIGRlIHBvc3RncmFkbyBkZSBsb3MgZXN0dWRpYW50ZXMgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsICBBY3VlcmRvIDAzMCBkZWwgMDMgZGUgZGljaWVtYnJlIGRlIDIwMTMgcG9yIG1lZGlvIGRlbCBjdWFsIHNlIGNyZWEgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0by4gRXN0b3MgZG9jdW1lbnRvcyBwb2Ryw6FuIHNlciBjb25zdWx0YWRvcyB5IGRlc2NhcmdhZG9zIGVuIGVsIHBvcnRhbCB3ZWIgZGUgbGEgYmlibGlvdGVjYSBodHRwOi8vc2lzdGVtYWRlYmlibGlvdGVjYXMudWRpc3RyaXRhbC5lZHUuY28vICAKClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBESVNUUklUQUwgRlJBTkNJU0NPIEpPU0UgREUgQ0FMREFTLCBMT1MgQVVUT1JFUyBHQVJBTlRJWkFOIFFVRSBTRSBIQSBDVU1QTElETyBDT04gTE9TIApERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KRW4gY29uc3RhbmNpYSBkZSBsbyBhbnRlcmlvciwgZmlybW8gKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50byBhIGxvcyAKCkZJUk1BIERFIExPUyBUSVRVTEFSRVMgREUgREVSRUNIT1MgREUgQVVUT1IKCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIEF1dG9yIChlcyk6CkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb3RhOiBFbiBjYXNvIHF1ZSBubyBlc3TDqSBkZSBhY3VlcmRvIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIGp1c3RpZmlxdWUgbG9zIG1vdGl2b3MgcG9yIGxvcyBjdWFsZXMgZWwgZG9jdW1lbnRvIHkgc3VzIGFuZXhvcyBubyBwdWVkZW4gc2VyIHB1YmxpY2Fkb3MgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBSSVVECg== |