Percentage points for testing homogeneity of several bivariate Gaussian populations

ABSTRACT: In this article, the exact distribution and exact percentage points for testing equality of q bivariate Gaussian populations are obtained. The distribution has been derived using the inverse Mellin transformation and the residue theorem. The percentage points have been computed for q = 2(1...

Full description

Autores:
Nagar, Daya Krishna
Gupta, Arjun Kumar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26753
Acceso en línea:
http://hdl.handle.net/10495/26753
Palabra clave:
Inverse Mellin transformation
Bivariate normal distribution
Percentage points
Residue theorem
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_f42f03d775c920622b39fc8966c2ae00
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/26753
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Percentage points for testing homogeneity of several bivariate Gaussian populations
title Percentage points for testing homogeneity of several bivariate Gaussian populations
spellingShingle Percentage points for testing homogeneity of several bivariate Gaussian populations
Inverse Mellin transformation
Bivariate normal distribution
Percentage points
Residue theorem
title_short Percentage points for testing homogeneity of several bivariate Gaussian populations
title_full Percentage points for testing homogeneity of several bivariate Gaussian populations
title_fullStr Percentage points for testing homogeneity of several bivariate Gaussian populations
title_full_unstemmed Percentage points for testing homogeneity of several bivariate Gaussian populations
title_sort Percentage points for testing homogeneity of several bivariate Gaussian populations
dc.creator.fl_str_mv Nagar, Daya Krishna
Gupta, Arjun Kumar
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Gupta, Arjun Kumar
dc.subject.proposal.spa.fl_str_mv Inverse Mellin transformation
Bivariate normal distribution
Percentage points
Residue theorem
topic Inverse Mellin transformation
Bivariate normal distribution
Percentage points
Residue theorem
description ABSTRACT: In this article, the exact distribution and exact percentage points for testing equality of q bivariate Gaussian populations are obtained. The distribution has been derived using the inverse Mellin transformation and the residue theorem. The percentage points have been computed for q = 2(1)5.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2022-03-20T14:34:53Z
dc.date.available.none.fl_str_mv 2022-03-20T14:34:53Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Daya, N. & Arjun, G. (2014) Percentage Points for Testing Homogeneity of Several Bivariate Gaussian Populations, American Journal of Mathematical and Management Sciences, 33:3, 228-238, DOI: c
dc.identifier.issn.none.fl_str_mv 0196-6324
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/26753
dc.identifier.doi.none.fl_str_mv 10.1080/01966324.2014.928244
dc.identifier.eissn.none.fl_str_mv 2325-8454
identifier_str_mv Daya, N. & Arjun, G. (2014) Percentage Points for Testing Homogeneity of Several Bivariate Gaussian Populations, American Journal of Mathematical and Management Sciences, 33:3, 228-238, DOI: c
0196-6324
10.1080/01966324.2014.928244
2325-8454
url http://hdl.handle.net/10495/26753
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Am. J. Math. Manag.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.spa.fl_str_mv 11
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis
dc.publisher.group.spa.fl_str_mv Análisis Multivariado
dc.publisher.place.spa.fl_str_mv Londres, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/1/NagarDaya_2014_TestingHomogeneityGaussian.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/3/license.txt
bitstream.checksum.fl_str_mv 954ef06040e60a37e604ea4f36a0d51a
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173306633125888
spelling Nagar, Daya KrishnaGupta, Arjun Kumar2022-03-20T14:34:53Z2022-03-20T14:34:53Z2014Daya, N. & Arjun, G. (2014) Percentage Points for Testing Homogeneity of Several Bivariate Gaussian Populations, American Journal of Mathematical and Management Sciences, 33:3, 228-238, DOI: c0196-6324http://hdl.handle.net/10495/2675310.1080/01966324.2014.9282442325-8454ABSTRACT: In this article, the exact distribution and exact percentage points for testing equality of q bivariate Gaussian populations are obtained. The distribution has been derived using the inverse Mellin transformation and the residue theorem. The percentage points have been computed for q = 2(1)5.COL000053211application/pdfengTaylor and FrancisAnálisis MultivariadoLondres, Inglaterrainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Percentage points for testing homogeneity of several bivariate Gaussian populationsInverse Mellin transformationBivariate normal distributionPercentage pointsResidue theoremAm. J. Math. Manag.American Journal of Mathematical and Management Sciences228238333ORIGINALNagarDaya_2014_TestingHomogeneityGaussian.pdfNagarDaya_2014_TestingHomogeneityGaussian.pdfArtículo de investigaciónapplication/pdf74492https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/1/NagarDaya_2014_TestingHomogeneityGaussian.pdf954ef06040e60a37e604ea4f36a0d51aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/26753oai:bibliotecadigital.udea.edu.co:10495/267532023-04-11 16:13:03.111Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=