Percentage points for testing homogeneity of several bivariate Gaussian populations
ABSTRACT: In this article, the exact distribution and exact percentage points for testing equality of q bivariate Gaussian populations are obtained. The distribution has been derived using the inverse Mellin transformation and the residue theorem. The percentage points have been computed for q = 2(1...
- Autores:
-
Nagar, Daya Krishna
Gupta, Arjun Kumar
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/26753
- Acceso en línea:
- http://hdl.handle.net/10495/26753
- Palabra clave:
- Inverse Mellin transformation
Bivariate normal distribution
Percentage points
Residue theorem
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UDEA2_f42f03d775c920622b39fc8966c2ae00 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/26753 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Percentage points for testing homogeneity of several bivariate Gaussian populations |
title |
Percentage points for testing homogeneity of several bivariate Gaussian populations |
spellingShingle |
Percentage points for testing homogeneity of several bivariate Gaussian populations Inverse Mellin transformation Bivariate normal distribution Percentage points Residue theorem |
title_short |
Percentage points for testing homogeneity of several bivariate Gaussian populations |
title_full |
Percentage points for testing homogeneity of several bivariate Gaussian populations |
title_fullStr |
Percentage points for testing homogeneity of several bivariate Gaussian populations |
title_full_unstemmed |
Percentage points for testing homogeneity of several bivariate Gaussian populations |
title_sort |
Percentage points for testing homogeneity of several bivariate Gaussian populations |
dc.creator.fl_str_mv |
Nagar, Daya Krishna Gupta, Arjun Kumar |
dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Gupta, Arjun Kumar |
dc.subject.proposal.spa.fl_str_mv |
Inverse Mellin transformation Bivariate normal distribution Percentage points Residue theorem |
topic |
Inverse Mellin transformation Bivariate normal distribution Percentage points Residue theorem |
description |
ABSTRACT: In this article, the exact distribution and exact percentage points for testing equality of q bivariate Gaussian populations are obtained. The distribution has been derived using the inverse Mellin transformation and the residue theorem. The percentage points have been computed for q = 2(1)5. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2022-03-20T14:34:53Z |
dc.date.available.none.fl_str_mv |
2022-03-20T14:34:53Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Daya, N. & Arjun, G. (2014) Percentage Points for Testing Homogeneity of Several Bivariate Gaussian Populations, American Journal of Mathematical and Management Sciences, 33:3, 228-238, DOI: c |
dc.identifier.issn.none.fl_str_mv |
0196-6324 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/26753 |
dc.identifier.doi.none.fl_str_mv |
10.1080/01966324.2014.928244 |
dc.identifier.eissn.none.fl_str_mv |
2325-8454 |
identifier_str_mv |
Daya, N. & Arjun, G. (2014) Percentage Points for Testing Homogeneity of Several Bivariate Gaussian Populations, American Journal of Mathematical and Management Sciences, 33:3, 228-238, DOI: c 0196-6324 10.1080/01966324.2014.928244 2325-8454 |
url |
http://hdl.handle.net/10495/26753 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Am. J. Math. Manag. |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.extent.spa.fl_str_mv |
11 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor and Francis |
dc.publisher.group.spa.fl_str_mv |
Análisis Multivariado |
dc.publisher.place.spa.fl_str_mv |
Londres, Inglaterra |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/1/NagarDaya_2014_TestingHomogeneityGaussian.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/2/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/3/license.txt |
bitstream.checksum.fl_str_mv |
954ef06040e60a37e604ea4f36a0d51a b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173306633125888 |
spelling |
Nagar, Daya KrishnaGupta, Arjun Kumar2022-03-20T14:34:53Z2022-03-20T14:34:53Z2014Daya, N. & Arjun, G. (2014) Percentage Points for Testing Homogeneity of Several Bivariate Gaussian Populations, American Journal of Mathematical and Management Sciences, 33:3, 228-238, DOI: c0196-6324http://hdl.handle.net/10495/2675310.1080/01966324.2014.9282442325-8454ABSTRACT: In this article, the exact distribution and exact percentage points for testing equality of q bivariate Gaussian populations are obtained. The distribution has been derived using the inverse Mellin transformation and the residue theorem. The percentage points have been computed for q = 2(1)5.COL000053211application/pdfengTaylor and FrancisAnálisis MultivariadoLondres, Inglaterrainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Percentage points for testing homogeneity of several bivariate Gaussian populationsInverse Mellin transformationBivariate normal distributionPercentage pointsResidue theoremAm. J. Math. Manag.American Journal of Mathematical and Management Sciences228238333ORIGINALNagarDaya_2014_TestingHomogeneityGaussian.pdfNagarDaya_2014_TestingHomogeneityGaussian.pdfArtículo de investigaciónapplication/pdf74492https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/1/NagarDaya_2014_TestingHomogeneityGaussian.pdf954ef06040e60a37e604ea4f36a0d51aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/26753/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/26753oai:bibliotecadigital.udea.edu.co:10495/267532023-04-11 16:13:03.111Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |