Solution of a time fractional inverse advection-dispersion problem by discrete mollification

ABSTRACT: We consider an inverse problem for a time fractional advection-dispersion equation in a 1-D semi-infinite setting. The fractional derivative is interpreted in the sense of Caputo and advection and dispersion coefficients are constant. The inverse problem consists on the recovery of the bou...

Full description

Autores:
Mejía, Carlos
Piedrahita Monroy, Julian Alejandro
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/29203
Acceso en línea:
http://hdl.handle.net/10495/29203
http://www.scielo.org.co/scielo.php?pid=S0034-74262017000100083&script=sci_abstract&tlng=en
Palabra clave:
Derivadas (Matemáticas)
Diferencias finitas
Finite Differences
Derivadas fraccionales
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_ef5360edc07e2990ab98a16a6876abd3
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/29203
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Solution of a time fractional inverse advection-dispersion problem by discrete mollification
dc.title.alternative.spa.fl_str_mv Solución de un problema inverso de advección-dispersión con derivada temporal fraccionaria por medio de molificación discreta
title Solution of a time fractional inverse advection-dispersion problem by discrete mollification
spellingShingle Solution of a time fractional inverse advection-dispersion problem by discrete mollification
Derivadas (Matemáticas)
Diferencias finitas
Finite Differences
Derivadas fraccionales
title_short Solution of a time fractional inverse advection-dispersion problem by discrete mollification
title_full Solution of a time fractional inverse advection-dispersion problem by discrete mollification
title_fullStr Solution of a time fractional inverse advection-dispersion problem by discrete mollification
title_full_unstemmed Solution of a time fractional inverse advection-dispersion problem by discrete mollification
title_sort Solution of a time fractional inverse advection-dispersion problem by discrete mollification
dc.creator.fl_str_mv Mejía, Carlos
Piedrahita Monroy, Julian Alejandro
dc.contributor.author.none.fl_str_mv Mejía, Carlos
Piedrahita Monroy, Julian Alejandro
dc.subject.lemb.none.fl_str_mv Derivadas (Matemáticas)
Diferencias finitas
Finite Differences
topic Derivadas (Matemáticas)
Diferencias finitas
Finite Differences
Derivadas fraccionales
dc.subject.proposal.spa.fl_str_mv Derivadas fraccionales
description ABSTRACT: We consider an inverse problem for a time fractional advection-dispersion equation in a 1-D semi-infinite setting. The fractional derivative is interpreted in the sense of Caputo and advection and dispersion coefficients are constant. The inverse problem consists on the recovery of the boundary distribution of solute concentration and dispersion flux from measured (noisy) data known at an interior location. This inverse problem is ill-posed and thus the numerical solution must include some regularization technique. Our approach is a finite difference space marching scheme enhanced by adaptive discrete mollification. Error estimates and illustrative numerical examples are provided.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2022-06-14T17:57:08Z
dc.date.available.none.fl_str_mv 2022-06-14T17:57:08Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Mejía, Carlos, & Piedrahita H, Alejandro. (2017). Solution of a time fractional inverse advection-dispersion problem by discrete mollification. Revista Colombiana de Matemáticas, 51(1), 83-102. https://doi.org/10.15446/recolma.v51n1.66839
dc.identifier.issn.none.fl_str_mv 0034-7426
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/29203
dc.identifier.doi.none.fl_str_mv 10.15446/recolma.v51n1.66839.
dc.identifier.eissn.none.fl_str_mv 2357-4100
dc.identifier.url.spa.fl_str_mv http://www.scielo.org.co/scielo.php?pid=S0034-74262017000100083&script=sci_abstract&tlng=en
identifier_str_mv Mejía, Carlos, & Piedrahita H, Alejandro. (2017). Solution of a time fractional inverse advection-dispersion problem by discrete mollification. Revista Colombiana de Matemáticas, 51(1), 83-102. https://doi.org/10.15446/recolma.v51n1.66839
0034-7426
10.15446/recolma.v51n1.66839.
2357-4100
url http://hdl.handle.net/10495/29203
http://www.scielo.org.co/scielo.php?pid=S0034-74262017000100083&script=sci_abstract&tlng=en
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Colomb. Mat.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
dc.format.extent.spa.fl_str_mv 20
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Matemáticas
dc.publisher.group.spa.fl_str_mv EMAC - Enseñanza de Matemáticas y Computación
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/29203/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/29203/3/license.txt
https://bibliotecadigital.udea.edu.co/bitstream/10495/29203/1/PidrahitaAlejandro_2017_SolutionTimeFractional.pdf
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
f4083f286fa73bb0edad5f087f9ec5af
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173200799301632
spelling Mejía, CarlosPiedrahita Monroy, Julian Alejandro2022-06-14T17:57:08Z2022-06-14T17:57:08Z2017Mejía, Carlos, & Piedrahita H, Alejandro. (2017). Solution of a time fractional inverse advection-dispersion problem by discrete mollification. Revista Colombiana de Matemáticas, 51(1), 83-102. https://doi.org/10.15446/recolma.v51n1.668390034-7426http://hdl.handle.net/10495/2920310.15446/recolma.v51n1.66839.2357-4100http://www.scielo.org.co/scielo.php?pid=S0034-74262017000100083&script=sci_abstract&tlng=enABSTRACT: We consider an inverse problem for a time fractional advection-dispersion equation in a 1-D semi-infinite setting. The fractional derivative is interpreted in the sense of Caputo and advection and dispersion coefficients are constant. The inverse problem consists on the recovery of the boundary distribution of solute concentration and dispersion flux from measured (noisy) data known at an interior location. This inverse problem is ill-posed and thus the numerical solution must include some regularization technique. Our approach is a finite difference space marching scheme enhanced by adaptive discrete mollification. Error estimates and illustrative numerical examples are provided.RESUMEN: Consideramos un problema inverso para una ecuación de advección-dispersión con derivada temporal fraccionaria, en una configuración unidimensional. La derivada fraccionaria se interpreta en el sentido de Caputo y las coeficientes de advección y de dispersión son constantes. El problema inverso involucra la reconstrucción simultánea de la concentración de soluto y del flujo de dispersión en una de las fronteras del dominio físico, a partir de lecturas de datos perturbados en un punto interior del dominio. Mostramos que el problema inverso es mal condicionado y por tanto una solución numérica del problema requiere de alguna técnica de regularización. Proponemos un esquema de diferencias finitas de marcha en el espacio, que utiliza molificación discreta como técnica de regularización. Se incluyen estimativos de error y ejemplos numéricos ilustrativos.COL018055720application/pdfengUniversidad Nacional de Colombia, Facultad de Ciencias, Departamento de MatemáticasEMAC - Enseñanza de Matemáticas y ComputaciónBogotá, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Solution of a time fractional inverse advection-dispersion problem by discrete mollificationSolución de un problema inverso de advección-dispersión con derivada temporal fraccionaria por medio de molificación discretaDerivadas (Matemáticas)Diferencias finitasFinite DifferencesDerivadas fraccionalesRev. Colomb. Mat.Revista Colombiana de Matemáticas83102511CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstream/10495/29203/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/29203/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALPidrahitaAlejandro_2017_SolutionTimeFractional.pdfPidrahitaAlejandro_2017_SolutionTimeFractional.pdfArtículo de investigaciónapplication/pdf682511https://bibliotecadigital.udea.edu.co/bitstream/10495/29203/1/PidrahitaAlejandro_2017_SolutionTimeFractional.pdff4083f286fa73bb0edad5f087f9ec5afMD5110495/29203oai:bibliotecadigital.udea.edu.co:10495/292032022-06-14 12:57:09.099Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=