Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)

ABSTRACT: Ecological niche models (ENMs) aim to recreate the relationships between species and the environments where they occur and allow us to identify unexplored areas in geography where these species might be present. These models have been successfully used in terrestrial organisms but their ap...

Full description

Autores:
Valencia Rodríguez, Daniel
Jiménez Segura, Luz Fernanda
Rogéliz Prada, Carlos Andrés
Parra Vergara, Juan Luis
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30714
Acceso en línea:
https://hdl.handle.net/10495/30714
Palabra clave:
Agua dulce
Fresh water
Peces de agua dulce
Freshwater fish
Ríos
Rivers
Cartografía
Cartography
Distribución geográfica
Geographical distribution
Ecological niches
http://aims.fao.org/aos/agrovoc/c_5083
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_edaeeade05e447e31d0e71422b4c0e11
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30714
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)
title Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)
spellingShingle Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)
Agua dulce
Fresh water
Peces de agua dulce
Freshwater fish
Ríos
Rivers
Cartografía
Cartography
Distribución geográfica
Geographical distribution
Ecological niches
http://aims.fao.org/aos/agrovoc/c_5083
title_short Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)
title_full Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)
title_fullStr Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)
title_full_unstemmed Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)
title_sort Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)
dc.creator.fl_str_mv Valencia Rodríguez, Daniel
Jiménez Segura, Luz Fernanda
Rogéliz Prada, Carlos Andrés
Parra Vergara, Juan Luis
dc.contributor.author.none.fl_str_mv Valencia Rodríguez, Daniel
Jiménez Segura, Luz Fernanda
Rogéliz Prada, Carlos Andrés
Parra Vergara, Juan Luis
dc.subject.lemb.none.fl_str_mv Agua dulce
Fresh water
Peces de agua dulce
Freshwater fish
Ríos
Rivers
Cartografía
Cartography
topic Agua dulce
Fresh water
Peces de agua dulce
Freshwater fish
Ríos
Rivers
Cartografía
Cartography
Distribución geográfica
Geographical distribution
Ecological niches
http://aims.fao.org/aos/agrovoc/c_5083
dc.subject.agrovoc.none.fl_str_mv Distribución geográfica
Geographical distribution
dc.subject.proposal.spa.fl_str_mv Ecological niches
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_5083
description ABSTRACT: Ecological niche models (ENMs) aim to recreate the relationships between species and the environments where they occur and allow us to identify unexplored areas in geography where these species might be present. These models have been successfully used in terrestrial organisms but their application in aquatic organisms is still scarce. Recent advances in the availability of species occurrences and environmental information particular to aquatic systems allow the evaluation of these models. This study aims to characterize the niche of the Sabaleta Brycon henni Eigenmann 1913, an endemic fish of the Colombian Andes, using ENMs to predict its geographical distribution across the Magdalena Basin. For this purpose, we used a set of environmental variables specific to freshwater systems in addition to the customary bioclimatic variables, and species’ occurrence data to model its potential distribution using the Maximum Entropy algorithm (MaxEnt). We evaluate the relative importance between these two sets of variables, the model’s performance, and its geographic overlap with the IUCN map. Both on-site (annual precipitation, minimum temperature of coldest month) and upstream variables (open waters, average minimum temperature of the coldest month and average precipitation seasonality) were included in the models with the highest predictive accuracy. With an area under the curve of 90%, 99% of the species occurrences and 68% of absences correctly predicted, our results support the good performance of ENMs to predict the potential distribution of the Sabaleta and the utility of this tool in conservation and decision-making at the national level.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-09-20T14:27:11Z
dc.date.available.none.fl_str_mv 2022-09-20T14:27:11Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Valencia-Rodrı´guez D, Jime´nez-Segura L, Roge´liz CA, Parra JL (2021) Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16(3): e0247876. https://doi.org/10.1371/journal.pone.0247876
dc.identifier.issn.none.fl_str_mv 1932-6203
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30714
dc.identifier.doi.none.fl_str_mv 10.1371/journal.pone.0247876
identifier_str_mv Valencia-Rodrı´guez D, Jime´nez-Segura L, Roge´liz CA, Parra JL (2021) Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16(3): e0247876. https://doi.org/10.1371/journal.pone.0247876
1932-6203
10.1371/journal.pone.0247876
url https://hdl.handle.net/10495/30714
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv PLoS ONE.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
dc.format.extent.spa.fl_str_mv 17
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Public Library of Science
dc.publisher.group.spa.fl_str_mv Ecología y Evolución de Vertebrados
Grupo de Ictiología
dc.publisher.place.spa.fl_str_mv San Francisco, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/30714/3/ValenciaDaniel_2021_EcologicalNicheModeling.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30714/4/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30714/5/license.txt
bitstream.checksum.fl_str_mv 0db3c6909f4231aba1388e8cc1614cb5
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173121227063296
spelling Valencia Rodríguez, DanielJiménez Segura, Luz FernandaRogéliz Prada, Carlos AndrésParra Vergara, Juan Luis2022-09-20T14:27:11Z2022-09-20T14:27:11Z2021Valencia-Rodrı´guez D, Jime´nez-Segura L, Roge´liz CA, Parra JL (2021) Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms: The case of the Sabaleta Brycon henni (Eigenmann, 1913). PLoS ONE 16(3): e0247876. https://doi.org/10.1371/journal.pone.02478761932-6203https://hdl.handle.net/10495/3071410.1371/journal.pone.0247876ABSTRACT: Ecological niche models (ENMs) aim to recreate the relationships between species and the environments where they occur and allow us to identify unexplored areas in geography where these species might be present. These models have been successfully used in terrestrial organisms but their application in aquatic organisms is still scarce. Recent advances in the availability of species occurrences and environmental information particular to aquatic systems allow the evaluation of these models. This study aims to characterize the niche of the Sabaleta Brycon henni Eigenmann 1913, an endemic fish of the Colombian Andes, using ENMs to predict its geographical distribution across the Magdalena Basin. For this purpose, we used a set of environmental variables specific to freshwater systems in addition to the customary bioclimatic variables, and species’ occurrence data to model its potential distribution using the Maximum Entropy algorithm (MaxEnt). We evaluate the relative importance between these two sets of variables, the model’s performance, and its geographic overlap with the IUCN map. Both on-site (annual precipitation, minimum temperature of coldest month) and upstream variables (open waters, average minimum temperature of the coldest month and average precipitation seasonality) were included in the models with the highest predictive accuracy. With an area under the curve of 90%, 99% of the species occurrences and 68% of absences correctly predicted, our results support the good performance of ENMs to predict the potential distribution of the Sabaleta and the utility of this tool in conservation and decision-making at the national level.COL0147267COL007870417application/pdfengPublic Library of ScienceEcología y Evolución de VertebradosGrupo de IctiologíaSan Francisco, Estados Unidosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Ecological niche modeling as an effective tool to predict the distribution of freshwater organisms : The case of the Sabaleta Brycon henni (Eigenmann, 1913)Agua dulceFresh waterPeces de agua dulceFreshwater fishRíosRiversCartografíaCartographyDistribución geográficaGeographical distributionEcological nicheshttp://aims.fao.org/aos/agrovoc/c_5083PLoS ONE.PLoS ONE117163ORIGINALValenciaDaniel_2021_EcologicalNicheModeling.pdfValenciaDaniel_2021_EcologicalNicheModeling.pdfArtículo de investigaciónapplication/pdf3211392https://bibliotecadigital.udea.edu.co/bitstream/10495/30714/3/ValenciaDaniel_2021_EcologicalNicheModeling.pdf0db3c6909f4231aba1388e8cc1614cb5MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstream/10495/30714/4/license_rdfe2060682c9c70d4d30c83c51448f4eedMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30714/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5510495/30714oai:bibliotecadigital.udea.edu.co:10495/307142022-09-20 10:22:24.429Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=