Normal subdigroups and the isomorphismtheorems for digroups

ABSTRACT: We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.

Autores:
Ongay Larios, Fausto Antonio
Velásquez Ossa, Raúl Eduardo
Wills Toro, Luis Alberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/22162
Acceso en línea:
http://hdl.handle.net/10495/22162
http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191
Palabra clave:
Digroups
Isomorphism Theorems
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_ecfa2b27a5ba78a861e42e03edf5f279
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/22162
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Normal subdigroups and the isomorphismtheorems for digroups
title Normal subdigroups and the isomorphismtheorems for digroups
spellingShingle Normal subdigroups and the isomorphismtheorems for digroups
Digroups
Isomorphism Theorems
title_short Normal subdigroups and the isomorphismtheorems for digroups
title_full Normal subdigroups and the isomorphismtheorems for digroups
title_fullStr Normal subdigroups and the isomorphismtheorems for digroups
title_full_unstemmed Normal subdigroups and the isomorphismtheorems for digroups
title_sort Normal subdigroups and the isomorphismtheorems for digroups
dc.creator.fl_str_mv Ongay Larios, Fausto Antonio
Velásquez Ossa, Raúl Eduardo
Wills Toro, Luis Alberto
dc.contributor.author.none.fl_str_mv Ongay Larios, Fausto Antonio
Velásquez Ossa, Raúl Eduardo
Wills Toro, Luis Alberto
dc.subject.proposal.spa.fl_str_mv Digroups
Isomorphism Theorems
topic Digroups
Isomorphism Theorems
description ABSTRACT: We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2021-09-04T00:14:27Z
dc.date.available.none.fl_str_mv 2021-09-04T00:14:27Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1726-3255
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/22162
dc.identifier.eissn.none.fl_str_mv 2415-721X
dc.identifier.url.spa.fl_str_mv http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191
identifier_str_mv 1726-3255
2415-721X
url http://hdl.handle.net/10495/22162
http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Algebra Discret. Math.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.spa.fl_str_mv 22
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Lugansk National Taras Shevchenko University
dc.publisher.group.spa.fl_str_mv Álgebra U de A
dc.publisher.place.spa.fl_str_mv Luhansk, Ucrania
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/22162/1/Vel%c3%a1squezRa%c3%bal_2016_SubdigroupsIsomorphismTheorems.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/22162/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/22162/3/license.txt
bitstream.checksum.fl_str_mv 80f510e9a2fc341fb6af6f81059b7027
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173296603496448
spelling Ongay Larios, Fausto AntonioVelásquez Ossa, Raúl EduardoWills Toro, Luis Alberto2021-09-04T00:14:27Z2021-09-04T00:14:27Z20161726-3255http://hdl.handle.net/10495/221622415-721Xhttp://admjournal.luguniv.edu.ua/index.php/adm/article/view/191ABSTRACT: We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.COL008689622application/pdfengLugansk National Taras Shevchenko UniversityÁlgebra U de ALuhansk, Ucraniainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Normal subdigroups and the isomorphismtheorems for digroupsDigroupsIsomorphism TheoremsAlgebra Discret. Math.Algebra and Discrete Mathematics262283222ORIGINALVelásquezRaúl_2016_SubdigroupsIsomorphismTheorems.pdfVelásquezRaúl_2016_SubdigroupsIsomorphismTheorems.pdfArtículo de investigaciónapplication/pdf403540https://bibliotecadigital.udea.edu.co/bitstream/10495/22162/1/Vel%c3%a1squezRa%c3%bal_2016_SubdigroupsIsomorphismTheorems.pdf80f510e9a2fc341fb6af6f81059b7027MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstream/10495/22162/2/license_rdfe2060682c9c70d4d30c83c51448f4eedMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/22162/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/22162oai:bibliotecadigital.udea.edu.co:10495/221622023-04-11 16:03:42.42Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=