An experimental and modeling study of diethyl carbonate oxidation
ABSTRACT: Diethyl carbonate (DEC) is an attractive biofuel that can be used to displace petroleum-derived diesel fuel, thereby reducing CO2 and particulate emissions from diesel engines. A better understanding of DEC combustion characteristics is needed to facilitate its use in internal combustion e...
- Autores:
-
Curran, Henry J.
Polo Córdoba, Angel David
Pitz, William J.
Dagaut, Philippe
Togbé, Casimir
Sarathy, Mani
Mehl, Marco
Agudelo Santamaría, John Ramiro
Bustamante Londoño, Felipe
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/13356
- Acceso en línea:
- http://hdl.handle.net/10495/13356
- Palabra clave:
- Diethyl carbonate
Ignition delay time
Jet-stirred reactor
Oxidation
Rapid compression machine
Shock tube
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
UDEA2_e295e9d7734b7499916a65fefb03dac6 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/13356 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
An experimental and modeling study of diethyl carbonate oxidation |
title |
An experimental and modeling study of diethyl carbonate oxidation |
spellingShingle |
An experimental and modeling study of diethyl carbonate oxidation Diethyl carbonate Ignition delay time Jet-stirred reactor Oxidation Rapid compression machine Shock tube |
title_short |
An experimental and modeling study of diethyl carbonate oxidation |
title_full |
An experimental and modeling study of diethyl carbonate oxidation |
title_fullStr |
An experimental and modeling study of diethyl carbonate oxidation |
title_full_unstemmed |
An experimental and modeling study of diethyl carbonate oxidation |
title_sort |
An experimental and modeling study of diethyl carbonate oxidation |
dc.creator.fl_str_mv |
Curran, Henry J. Polo Córdoba, Angel David Pitz, William J. Dagaut, Philippe Togbé, Casimir Sarathy, Mani Mehl, Marco Agudelo Santamaría, John Ramiro Bustamante Londoño, Felipe |
dc.contributor.author.none.fl_str_mv |
Curran, Henry J. Polo Córdoba, Angel David Pitz, William J. Dagaut, Philippe Togbé, Casimir Sarathy, Mani Mehl, Marco Agudelo Santamaría, John Ramiro Bustamante Londoño, Felipe |
dc.subject.none.fl_str_mv |
Diethyl carbonate Ignition delay time Jet-stirred reactor Oxidation Rapid compression machine Shock tube |
topic |
Diethyl carbonate Ignition delay time Jet-stirred reactor Oxidation Rapid compression machine Shock tube |
description |
ABSTRACT: Diethyl carbonate (DEC) is an attractive biofuel that can be used to displace petroleum-derived diesel fuel, thereby reducing CO2 and particulate emissions from diesel engines. A better understanding of DEC combustion characteristics is needed to facilitate its use in internal combustion engines. Toward this goal, ignition delay times for DEC were measured at conditions relevant to internal combustion engines using a rapid compression machine (RCM) and a shock tube. The experimental conditions investigated covered a wide range of temperatures (660–1300 K), a pressure of 30 bar, and equivalence ratios of 0.5, 1.0 and 2.0 in air. To provide further understanding of the intermediates formed in DEC oxidation, species concentrations were measured in a jet-stirred reactor at 10 atm over a temperature range of 500–1200 K and at equivalence ratios of 0.5, 1.0 and 2.0. These experimental measurements were used to aid the development and validation of a chemical kinetic model for DEC. The experimental results for ignition in the RCM showed near negative temperature coefficient (NTC) behavior. Six-membered alkylperoxy radical () isomerizations are conventionally thought to initiate low-temperature branching reactions responsible for NTC behavior, but DEC has no such possible 6- and 7-membered ring isomerizations. However, its molecular structure allows for 5-, 8- and 9-membered ring isomerizations. To provide accurate rate constants for these ring structures, ab initio computations for isomerization reactions were performed. These new isomerization rate constants have been implemented in a chemical kinetic model for DEC oxidation. The model simulations have been compared with ignition delay times measured in the RCM near the NTC region. Results of the simulation were also compared with experimental results for ignition in the high-temperature region and for species concentrations in the jet-stirred reactor. Chemical kinetic insights into the oxidation of DEC were made using these experimental and modeling results. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-01-18T03:09:44Z |
dc.date.available.none.fl_str_mv |
2020-01-18T03:09:44Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a86 http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
H. Nakamura, et al, “An experimental and modeling study of diethyl carbonate oxidation,” Combust. Flame, vol. 162, no. 4, pp. 1395-1405, Abr. 2015. https://doi.org/10.1016/j.combustflame.2014.11.002 |
dc.identifier.issn.none.fl_str_mv |
0010-2180 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/13356 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.combustflame.2014.11.002 |
dc.identifier.eissn.none.fl_str_mv |
1556-2921 |
identifier_str_mv |
H. Nakamura, et al, “An experimental and modeling study of diethyl carbonate oxidation,” Combust. Flame, vol. 162, no. 4, pp. 1395-1405, Abr. 2015. https://doi.org/10.1016/j.combustflame.2014.11.002 0010-2180 10.1016/j.combustflame.2014.11.002 1556-2921 |
url |
http://hdl.handle.net/10495/13356 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
1395-1405 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.publisher.place.spa.fl_str_mv |
Holanda |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/2/license_url http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/3/license_text http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/4/license_rdf http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/5/license.txt http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/1/BustamanteFelipe_2015_Combustionflame.pdf |
bitstream.checksum.fl_str_mv |
4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 8a4605be74aa9ea9d79846c1fba20a33 f1b9af2d6d640471041a373c97434877 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173094459015168 |
spelling |
Curran, Henry J.Polo Córdoba, Angel DavidPitz, William J.Dagaut, PhilippeTogbé, CasimirSarathy, ManiMehl, MarcoAgudelo Santamaría, John RamiroBustamante Londoño, Felipe2020-01-18T03:09:44Z2020-01-18T03:09:44Z2015H. Nakamura, et al, “An experimental and modeling study of diethyl carbonate oxidation,” Combust. Flame, vol. 162, no. 4, pp. 1395-1405, Abr. 2015. https://doi.org/10.1016/j.combustflame.2014.11.0020010-2180http://hdl.handle.net/10495/1335610.1016/j.combustflame.2014.11.0021556-2921ABSTRACT: Diethyl carbonate (DEC) is an attractive biofuel that can be used to displace petroleum-derived diesel fuel, thereby reducing CO2 and particulate emissions from diesel engines. A better understanding of DEC combustion characteristics is needed to facilitate its use in internal combustion engines. Toward this goal, ignition delay times for DEC were measured at conditions relevant to internal combustion engines using a rapid compression machine (RCM) and a shock tube. The experimental conditions investigated covered a wide range of temperatures (660–1300 K), a pressure of 30 bar, and equivalence ratios of 0.5, 1.0 and 2.0 in air. To provide further understanding of the intermediates formed in DEC oxidation, species concentrations were measured in a jet-stirred reactor at 10 atm over a temperature range of 500–1200 K and at equivalence ratios of 0.5, 1.0 and 2.0. These experimental measurements were used to aid the development and validation of a chemical kinetic model for DEC. The experimental results for ignition in the RCM showed near negative temperature coefficient (NTC) behavior. Six-membered alkylperoxy radical () isomerizations are conventionally thought to initiate low-temperature branching reactions responsible for NTC behavior, but DEC has no such possible 6- and 7-membered ring isomerizations. However, its molecular structure allows for 5-, 8- and 9-membered ring isomerizations. To provide accurate rate constants for these ring structures, ab initio computations for isomerization reactions were performed. These new isomerization rate constants have been implemented in a chemical kinetic model for DEC oxidation. The model simulations have been compared with ignition delay times measured in the RCM near the NTC region. Results of the simulation were also compared with experimental results for ignition in the high-temperature region and for species concentrations in the jet-stirred reactor. Chemical kinetic insights into the oxidation of DEC were made using these experimental and modeling results.10application/pdfengElsevierHolandainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a86http://purl.org/coar/version/c_970fb48d4fbd8a85Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Diethyl carbonateIgnition delay timeJet-stirred reactorOxidationRapid compression machineShock tubeAn experimental and modeling study of diethyl carbonate oxidation1395-1405Combustion and flame139514051624CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55ORIGINALBustamanteFelipe_2015_Combustionflame.pdfBustamanteFelipe_2015_Combustionflame.pdfArtículo de investigaciónapplication/pdf1194029http://bibliotecadigital.udea.edu.co/bitstream/10495/13356/1/BustamanteFelipe_2015_Combustionflame.pdff1b9af2d6d640471041a373c97434877MD5110495/13356oai:bibliotecadigital.udea.edu.co:10495/133562021-06-17 16:03:08.853Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |