Bivariate generalization of the Gauss hypergeometric distribution

ABSTRACT: The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i =...

Full description

Autores:
Nagar, Daya Krishna
Bedoya Valencia, Danilo
Gupta, Arjun Kumar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26790
Acceso en línea:
http://hdl.handle.net/10495/26790
Palabra clave:
Funciones
Functions
Funciones hipergeométricas
Hypergeometric functions
62H15
62E15
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_dc08be6f9e16c586f0e0f8d6a5b2d373
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/26790
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Bivariate generalization of the Gauss hypergeometric distribution
title Bivariate generalization of the Gauss hypergeometric distribution
spellingShingle Bivariate generalization of the Gauss hypergeometric distribution
Funciones
Functions
Funciones hipergeométricas
Hypergeometric functions
62H15
62E15
title_short Bivariate generalization of the Gauss hypergeometric distribution
title_full Bivariate generalization of the Gauss hypergeometric distribution
title_fullStr Bivariate generalization of the Gauss hypergeometric distribution
title_full_unstemmed Bivariate generalization of the Gauss hypergeometric distribution
title_sort Bivariate generalization of the Gauss hypergeometric distribution
dc.creator.fl_str_mv Nagar, Daya Krishna
Bedoya Valencia, Danilo
Gupta, Arjun Kumar
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Bedoya Valencia, Danilo
Gupta, Arjun Kumar
dc.subject.lemb.none.fl_str_mv Funciones
Functions
Funciones hipergeométricas
Hypergeometric functions
topic Funciones
Functions
Funciones hipergeométricas
Hypergeometric functions
62H15
62E15
dc.subject.proposal.spa.fl_str_mv 62H15
62E15
description ABSTRACT: The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i = 1, 2 are constants. In this article, we study several of its properties such as marginal and conditional distributions, joint moments and the coefficient of correlation. We compute the exact forms of R´enyi and Shannon entropies for this distribution. We also derive the distributions of X+Y , X/(X +Y ), V = X/Y and XY where X and Y follow a bivariate Gauss hypergeometric distribution.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2022-03-22T21:24:23Z
dc.date.available.none.fl_str_mv 2022-03-22T21:24:23Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Nagar, D. K., Bedoya-Valencia, D., & Gupta, A. K. (2015). Bivariate Generalization of the Gauss Hypergeometric Distribution. Applied Mathematical Sciences, 9(51), 2531-2551. http://dx.doi.org/10.12988/ams.2015.52111
dc.identifier.issn.none.fl_str_mv 1312-885X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/26790
dc.identifier.doi.none.fl_str_mv 10.12988/ams.2015.52111
dc.identifier.eissn.none.fl_str_mv 1314-7552
identifier_str_mv Nagar, D. K., Bedoya-Valencia, D., & Gupta, A. K. (2015). Bivariate Generalization of the Gauss Hypergeometric Distribution. Applied Mathematical Sciences, 9(51), 2531-2551. http://dx.doi.org/10.12988/ams.2015.52111
1312-885X
10.12988/ams.2015.52111
1314-7552
url http://hdl.handle.net/10495/26790
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Appl. Math. Sci.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
dc.format.extent.spa.fl_str_mv 21
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Hikari
dc.publisher.group.spa.fl_str_mv Análisis Multivariado
dc.publisher.place.spa.fl_str_mv Bulgaria
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/26790/2/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/26790/3/license.txt
http://bibliotecadigital.udea.edu.co/bitstream/10495/26790/1/NagarDaya_2014_BivariateGaussDistribution.pdf
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
e799f4d8ce73517d5a8cc7eb687bbafb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173207286841344
spelling Nagar, Daya KrishnaBedoya Valencia, DaniloGupta, Arjun Kumar2022-03-22T21:24:23Z2022-03-22T21:24:23Z2014Nagar, D. K., Bedoya-Valencia, D., & Gupta, A. K. (2015). Bivariate Generalization of the Gauss Hypergeometric Distribution. Applied Mathematical Sciences, 9(51), 2531-2551. http://dx.doi.org/10.12988/ams.2015.521111312-885Xhttp://hdl.handle.net/10495/2679010.12988/ams.2015.521111314-7552ABSTRACT: The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i = 1, 2 are constants. In this article, we study several of its properties such as marginal and conditional distributions, joint moments and the coefficient of correlation. We compute the exact forms of R´enyi and Shannon entropies for this distribution. We also derive the distributions of X+Y , X/(X +Y ), V = X/Y and XY where X and Y follow a bivariate Gauss hypergeometric distribution.COL000053221application/pdfengHikariAnálisis MultivariadoBulgariainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Bivariate generalization of the Gauss hypergeometric distributionFuncionesFunctionsFunciones hipergeométricasHypergeometric functions62H1562E15Appl. Math. Sci.Applied Mathematical Sciences25312551951CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927http://bibliotecadigital.udea.edu.co/bitstream/10495/26790/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/26790/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALNagarDaya_2014_BivariateGaussDistribution.pdfNagarDaya_2014_BivariateGaussDistribution.pdfArtículo de investigaciónapplication/pdf715904http://bibliotecadigital.udea.edu.co/bitstream/10495/26790/1/NagarDaya_2014_BivariateGaussDistribution.pdfe799f4d8ce73517d5a8cc7eb687bbafbMD5110495/26790oai:bibliotecadigital.udea.edu.co:10495/267902022-03-22 16:24:23.901Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=