Bivariate generalization of the Gauss hypergeometric distribution

ABSTRACT: The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i =...

Full description

Autores:
Nagar, Daya Krishna
Bedoya Valencia, Danilo
Gupta, Arjun Kumar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26790
Acceso en línea:
http://hdl.handle.net/10495/26790
Palabra clave:
Funciones
Functions
Funciones hipergeométricas
Hypergeometric functions
62H15
62E15
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
Description
Summary:ABSTRACT: The bivariate generalization of the Gauss hypergeometric distribution is defined by the probability density function proportional to x α1−1y α2−1 (1 − x − y) β−1 (1 + ξ1x + ξ2y) −γ , x > 0, y > 0, x + y < 1, where αi > 0, i = 1, 2, β > 0, −∞ < γ < ∞ and ξi > −1, i = 1, 2 are constants. In this article, we study several of its properties such as marginal and conditional distributions, joint moments and the coefficient of correlation. We compute the exact forms of R´enyi and Shannon entropies for this distribution. We also derive the distributions of X+Y , X/(X +Y ), V = X/Y and XY where X and Y follow a bivariate Gauss hypergeometric distribution.