Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups

ABSTRACT: We give a classification of flat affine left invariant metric geometric structures on simply connected Lie groups of dimensions two and three. We give some examples of non flat metrics in dimensions up to four.

Autores:
Buitrago Vélez, Juan Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/21478
Acceso en línea:
http://hdl.handle.net/10495/21478
Palabra clave:
Metric spaces
Lie groups
Lie algebras
Riemannian manifolds
Varieties (Universal algebra)
Invariants
Affine algebraic groups
Geometry, Riemannian
Distance geometry
Variedades (Álgebra universal)
http://id.loc.gov/authorities/subjects/sh85084441
http://id.loc.gov/authorities/subjects/sh85076786
http://id.loc.gov/authorities/subjects/sh85076782
http://id.loc.gov/authorities/subjects/sh85114045
http://id.loc.gov/authorities/subjects/sh87001104
http://id.loc.gov/authorities/subjects/sh85067665
http://id.loc.gov/authorities/subjects/sh96011312
http://id.loc.gov/authorities/subjects/sh85054159
http://id.loc.gov/authorities/subjects/sh85038508
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
id UDEA2_da8e0fe8004a3d7e09c6d83187e7fa65
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/21478
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups
title Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups
spellingShingle Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups
Metric spaces
Lie groups
Lie algebras
Riemannian manifolds
Varieties (Universal algebra)
Invariants
Affine algebraic groups
Geometry, Riemannian
Distance geometry
Variedades (Álgebra universal)
http://id.loc.gov/authorities/subjects/sh85084441
http://id.loc.gov/authorities/subjects/sh85076786
http://id.loc.gov/authorities/subjects/sh85076782
http://id.loc.gov/authorities/subjects/sh85114045
http://id.loc.gov/authorities/subjects/sh87001104
http://id.loc.gov/authorities/subjects/sh85067665
http://id.loc.gov/authorities/subjects/sh96011312
http://id.loc.gov/authorities/subjects/sh85054159
http://id.loc.gov/authorities/subjects/sh85038508
title_short Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups
title_full Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups
title_fullStr Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups
title_full_unstemmed Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups
title_sort Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groups
dc.creator.fl_str_mv Buitrago Vélez, Juan Felipe
dc.contributor.advisor.none.fl_str_mv Saldarriaga Ortiz, Omar Darío
dc.contributor.author.none.fl_str_mv Buitrago Vélez, Juan Felipe
dc.subject.lcsh.none.fl_str_mv Metric spaces
Lie groups
Lie algebras
Riemannian manifolds
Varieties (Universal algebra)
Invariants
Affine algebraic groups
Geometry, Riemannian
Distance geometry
topic Metric spaces
Lie groups
Lie algebras
Riemannian manifolds
Varieties (Universal algebra)
Invariants
Affine algebraic groups
Geometry, Riemannian
Distance geometry
Variedades (Álgebra universal)
http://id.loc.gov/authorities/subjects/sh85084441
http://id.loc.gov/authorities/subjects/sh85076786
http://id.loc.gov/authorities/subjects/sh85076782
http://id.loc.gov/authorities/subjects/sh85114045
http://id.loc.gov/authorities/subjects/sh87001104
http://id.loc.gov/authorities/subjects/sh85067665
http://id.loc.gov/authorities/subjects/sh96011312
http://id.loc.gov/authorities/subjects/sh85054159
http://id.loc.gov/authorities/subjects/sh85038508
dc.subject.lemb.none.fl_str_mv Variedades (Álgebra universal)
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85084441
http://id.loc.gov/authorities/subjects/sh85076786
http://id.loc.gov/authorities/subjects/sh85076782
http://id.loc.gov/authorities/subjects/sh85114045
http://id.loc.gov/authorities/subjects/sh87001104
http://id.loc.gov/authorities/subjects/sh85067665
http://id.loc.gov/authorities/subjects/sh96011312
http://id.loc.gov/authorities/subjects/sh85054159
http://id.loc.gov/authorities/subjects/sh85038508
description ABSTRACT: We give a classification of flat affine left invariant metric geometric structures on simply connected Lie groups of dimensions two and three. We give some examples of non flat metrics in dimensions up to four.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-03T15:21:09Z
dc.date.available.none.fl_str_mv 2021-08-03T15:21:09Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/21478
url http://hdl.handle.net/10495/21478
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.spa.fl_str_mv 11
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/21478/1/BuitragoJuan_2021_MetricsLieGroups.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/21478/2/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/21478/3/license.txt
bitstream.checksum.fl_str_mv 79a9cf694bcf99920dd0188681fa7eef
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173162925785088
spelling Saldarriaga Ortiz, Omar DaríoBuitrago Vélez, Juan Felipe2021-08-03T15:21:09Z2021-08-03T15:21:09Z2021http://hdl.handle.net/10495/21478ABSTRACT: We give a classification of flat affine left invariant metric geometric structures on simply connected Lie groups of dimensions two and three. We give some examples of non flat metrics in dimensions up to four.11application/pdfenginfo:eu-repo/semantics/draftinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)http://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Metric spacesLie groupsLie algebrasRiemannian manifoldsVarieties (Universal algebra)InvariantsAffine algebraic groupsGeometry, RiemannianDistance geometryVariedades (Álgebra universal)http://id.loc.gov/authorities/subjects/sh85084441http://id.loc.gov/authorities/subjects/sh85076786http://id.loc.gov/authorities/subjects/sh85076782http://id.loc.gov/authorities/subjects/sh85114045http://id.loc.gov/authorities/subjects/sh87001104http://id.loc.gov/authorities/subjects/sh85067665http://id.loc.gov/authorities/subjects/sh96011312http://id.loc.gov/authorities/subjects/sh85054159http://id.loc.gov/authorities/subjects/sh85038508Left invariant Lorentzian, hyperbolic and Riemannian metrics on Lie groupsMedellín, ColombiaMatemáticoPregradoFacultad de Ciencias Exactas y Naturales. Carrera de MatemáticasUniversidad de AntioquiaORIGINALBuitragoJuan_2021_MetricsLieGroups.pdfBuitragoJuan_2021_MetricsLieGroups.pdfTrabajo de grado de pregradoapplication/pdf282618http://bibliotecadigital.udea.edu.co/bitstream/10495/21478/1/BuitragoJuan_2021_MetricsLieGroups.pdf79a9cf694bcf99920dd0188681fa7eefMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051http://bibliotecadigital.udea.edu.co/bitstream/10495/21478/2/license_rdfe2060682c9c70d4d30c83c51448f4eedMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/21478/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/21478oai:bibliotecadigital.udea.edu.co:10495/214782022-04-06 12:48:51.59Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=