The lorentz group, a galilean approach
ABSTRACT: We present a pedagogical approach to the Lorentz group. We start by introducing a compact notation to express the elements of the fundamental representation of the rotations group. Lorentz coordinate transformations are derived in a novel and compact form. We show how to make a Lorentz tra...
- Autores:
-
Jaramillo Arango, Daniel Esteban
Vanegas Arbeláez, Nelson
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2004
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30723
- Acceso en línea:
- https://hdl.handle.net/10495/30723
- Palabra clave:
- Relatividad (física)
Relativity (physics)
Transformaciones de Lorentz
Lorentz transformations
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UDEA2_d2ed50a6041ce58d492e63716b304850 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30723 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
The lorentz group, a galilean approach |
title |
The lorentz group, a galilean approach |
spellingShingle |
The lorentz group, a galilean approach Relatividad (física) Relativity (physics) Transformaciones de Lorentz Lorentz transformations |
title_short |
The lorentz group, a galilean approach |
title_full |
The lorentz group, a galilean approach |
title_fullStr |
The lorentz group, a galilean approach |
title_full_unstemmed |
The lorentz group, a galilean approach |
title_sort |
The lorentz group, a galilean approach |
dc.creator.fl_str_mv |
Jaramillo Arango, Daniel Esteban Vanegas Arbeláez, Nelson |
dc.contributor.author.none.fl_str_mv |
Jaramillo Arango, Daniel Esteban Vanegas Arbeláez, Nelson |
dc.subject.lemb.none.fl_str_mv |
Relatividad (física) Relativity (physics) Transformaciones de Lorentz Lorentz transformations |
topic |
Relatividad (física) Relativity (physics) Transformaciones de Lorentz Lorentz transformations |
description |
ABSTRACT: We present a pedagogical approach to the Lorentz group. We start by introducing a compact notation to express the elements of the fundamental representation of the rotations group. Lorentz coordinate transformations are derived in a novel and compact form. We show how to make a Lorentz transformation on the electromagnetic fields as well. A covariant time-derivative is introduced in order to deal with non-inertial systems. Examples of the usefulness of these results such as the rotating system and the Thomas precession, are also presented. |
publishDate |
2004 |
dc.date.issued.none.fl_str_mv |
2004 |
dc.date.accessioned.none.fl_str_mv |
2022-09-20T20:41:21Z |
dc.date.available.none.fl_str_mv |
2022-09-20T20:41:21Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Vanegas, N., & Jaramillo, D. E. (2004). The lorentz group, a galilean approach. Revista Mexicana de Física, 50(1),41-46. |
dc.identifier.issn.none.fl_str_mv |
0035-001X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30723 |
dc.identifier.eissn.none.fl_str_mv |
2683-2224 |
identifier_str_mv |
Vanegas, N., & Jaramillo, D. E. (2004). The lorentz group, a galilean approach. Revista Mexicana de Física, 50(1),41-46. 0035-001X 2683-2224 |
url |
https://hdl.handle.net/10495/30723 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Rev. Mex. Fís. |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.extent.spa.fl_str_mv |
5 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Sociedad Mexicana de Física A.C. |
dc.publisher.group.spa.fl_str_mv |
Grupo de Fenomenología de Interacciones Fundamentales |
dc.publisher.place.spa.fl_str_mv |
Ciudad de México, México |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/1/JaramilloD_2004_TheLorentzAGalilean.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/2/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/3/license.txt |
bitstream.checksum.fl_str_mv |
9af2e3c03e98adff549818c69fc19c76 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173255071498240 |
spelling |
Jaramillo Arango, Daniel EstebanVanegas Arbeláez, Nelson2022-09-20T20:41:21Z2022-09-20T20:41:21Z2004Vanegas, N., & Jaramillo, D. E. (2004). The lorentz group, a galilean approach. Revista Mexicana de Física, 50(1),41-46.0035-001Xhttps://hdl.handle.net/10495/307232683-2224ABSTRACT: We present a pedagogical approach to the Lorentz group. We start by introducing a compact notation to express the elements of the fundamental representation of the rotations group. Lorentz coordinate transformations are derived in a novel and compact form. We show how to make a Lorentz transformation on the electromagnetic fields as well. A covariant time-derivative is introduced in order to deal with non-inertial systems. Examples of the usefulness of these results such as the rotating system and the Thomas precession, are also presented.RESUMEN: En este trabajo se presenta una aproximación pedagógica al grupo de Lorentz. Se comienza introduciendo una notación compacta para expresar los elementos de la representación fundamental del grupo de rotaciones. Las transformaciones de Lorentz de las coordenadas se derivan de una manera compacta. Se muestra tambien cómo realizar las transformaciones de Lorentz sobre los campos electromagnéticos. Se introduce una derivada temporal covariante para tratar con sistemas no inerciales, para mostrar la utilidad de este método se presentan tambien ejemplos tales como el sistema rotante y la precesión de Thomas.COL00084235application/pdfengSociedad Mexicana de Física A.C.Grupo de Fenomenología de Interacciones FundamentalesCiudad de México, Méxicoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/The lorentz group, a galilean approachRelatividad (física)Relativity (physics)Transformaciones de LorentzLorentz transformationsRev. Mex. Fís.Revista Mexicana de Física4146501ORIGINALJaramilloD_2004_TheLorentzAGalilean.pdfJaramilloD_2004_TheLorentzAGalilean.pdfArtículo de investigaciónapplication/pdf140832https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/1/JaramilloD_2004_TheLorentzAGalilean.pdf9af2e3c03e98adff549818c69fc19c76MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/30723oai:bibliotecadigital.udea.edu.co:10495/307232022-09-20 15:41:22.427Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |