The lorentz group, a galilean approach

ABSTRACT: We present a pedagogical approach to the Lorentz group. We start by introducing a compact notation to express the elements of the fundamental representation of the rotations group. Lorentz coordinate transformations are derived in a novel and compact form. We show how to make a Lorentz tra...

Full description

Autores:
Jaramillo Arango, Daniel Esteban
Vanegas Arbeláez, Nelson
Tipo de recurso:
Article of investigation
Fecha de publicación:
2004
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30723
Acceso en línea:
https://hdl.handle.net/10495/30723
Palabra clave:
Relatividad (física)
Relativity (physics)
Transformaciones de Lorentz
Lorentz transformations
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_d2ed50a6041ce58d492e63716b304850
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30723
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv The lorentz group, a galilean approach
title The lorentz group, a galilean approach
spellingShingle The lorentz group, a galilean approach
Relatividad (física)
Relativity (physics)
Transformaciones de Lorentz
Lorentz transformations
title_short The lorentz group, a galilean approach
title_full The lorentz group, a galilean approach
title_fullStr The lorentz group, a galilean approach
title_full_unstemmed The lorentz group, a galilean approach
title_sort The lorentz group, a galilean approach
dc.creator.fl_str_mv Jaramillo Arango, Daniel Esteban
Vanegas Arbeláez, Nelson
dc.contributor.author.none.fl_str_mv Jaramillo Arango, Daniel Esteban
Vanegas Arbeláez, Nelson
dc.subject.lemb.none.fl_str_mv Relatividad (física)
Relativity (physics)
Transformaciones de Lorentz
Lorentz transformations
topic Relatividad (física)
Relativity (physics)
Transformaciones de Lorentz
Lorentz transformations
description ABSTRACT: We present a pedagogical approach to the Lorentz group. We start by introducing a compact notation to express the elements of the fundamental representation of the rotations group. Lorentz coordinate transformations are derived in a novel and compact form. We show how to make a Lorentz transformation on the electromagnetic fields as well. A covariant time-derivative is introduced in order to deal with non-inertial systems. Examples of the usefulness of these results such as the rotating system and the Thomas precession, are also presented.
publishDate 2004
dc.date.issued.none.fl_str_mv 2004
dc.date.accessioned.none.fl_str_mv 2022-09-20T20:41:21Z
dc.date.available.none.fl_str_mv 2022-09-20T20:41:21Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Vanegas, N., & Jaramillo, D. E. (2004). The lorentz group, a galilean approach. Revista Mexicana de Física, 50(1),41-46.
dc.identifier.issn.none.fl_str_mv 0035-001X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30723
dc.identifier.eissn.none.fl_str_mv 2683-2224
identifier_str_mv Vanegas, N., & Jaramillo, D. E. (2004). The lorentz group, a galilean approach. Revista Mexicana de Física, 50(1),41-46.
0035-001X
2683-2224
url https://hdl.handle.net/10495/30723
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Mex. Fís.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.spa.fl_str_mv 5
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Sociedad Mexicana de Física A.C.
dc.publisher.group.spa.fl_str_mv Grupo de Fenomenología de Interacciones Fundamentales
dc.publisher.place.spa.fl_str_mv Ciudad de México, México
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/1/JaramilloD_2004_TheLorentzAGalilean.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/3/license.txt
bitstream.checksum.fl_str_mv 9af2e3c03e98adff549818c69fc19c76
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173255071498240
spelling Jaramillo Arango, Daniel EstebanVanegas Arbeláez, Nelson2022-09-20T20:41:21Z2022-09-20T20:41:21Z2004Vanegas, N., & Jaramillo, D. E. (2004). The lorentz group, a galilean approach. Revista Mexicana de Física, 50(1),41-46.0035-001Xhttps://hdl.handle.net/10495/307232683-2224ABSTRACT: We present a pedagogical approach to the Lorentz group. We start by introducing a compact notation to express the elements of the fundamental representation of the rotations group. Lorentz coordinate transformations are derived in a novel and compact form. We show how to make a Lorentz transformation on the electromagnetic fields as well. A covariant time-derivative is introduced in order to deal with non-inertial systems. Examples of the usefulness of these results such as the rotating system and the Thomas precession, are also presented.RESUMEN: En este trabajo se presenta una aproximación pedagógica al grupo de Lorentz. Se comienza introduciendo una notación compacta para expresar los elementos de la representación fundamental del grupo de rotaciones. Las transformaciones de Lorentz de las coordenadas se derivan de una manera compacta. Se muestra tambien cómo realizar las transformaciones de Lorentz sobre los campos electromagnéticos. Se introduce una derivada temporal covariante para tratar con sistemas no inerciales, para mostrar la utilidad de este método se presentan tambien ejemplos tales como el sistema rotante y la precesión de Thomas.COL00084235application/pdfengSociedad Mexicana de Física A.C.Grupo de Fenomenología de Interacciones FundamentalesCiudad de México, Méxicoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/The lorentz group, a galilean approachRelatividad (física)Relativity (physics)Transformaciones de LorentzLorentz transformationsRev. Mex. Fís.Revista Mexicana de Física4146501ORIGINALJaramilloD_2004_TheLorentzAGalilean.pdfJaramilloD_2004_TheLorentzAGalilean.pdfArtículo de investigaciónapplication/pdf140832https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/1/JaramilloD_2004_TheLorentzAGalilean.pdf9af2e3c03e98adff549818c69fc19c76MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30723/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/30723oai:bibliotecadigital.udea.edu.co:10495/307232022-09-20 15:41:22.427Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=