Changes on the bioavailability of DDT in soil by addition of lignite and coal solubilizing bacteria
ABSTRACT: DDT is an organochlorine insecticide that is persistent and exhibits residuality in the environment. This study assessed the effect of the application of lignite [low rank coal (LRC)] and coal solubilizing bacteria (CSB), on the bioavailability of DDT in soil with low organic matter conten...
- Autores:
-
Díaz Fuenmayor, Kerry Johana
Pantoja Guerra, Manuel
Torres Palma, Ricardo Antonio
Valero Valero, Nelson Osvaldo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/13128
- Acceso en línea:
- http://hdl.handle.net/10495/13128
- Palabra clave:
- Carbón de bajo rango
Adsorción
Materia orgánica humificada
Descontaminación
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
Summary: | ABSTRACT: DDT is an organochlorine insecticide that is persistent and exhibits residuality in the environment. This study assessed the effect of the application of lignite [low rank coal (LRC)] and coal solubilizing bacteria (CSB), on the bioavailability of DDT in soil with low organic matter content. In doing this, three trials were designed; in the first trial, soil samples were treated with CSB and LRC for 30 days and, afterwards, they were immersed in a DDT solution at water solubility limit and, lastly, the remaining DDT in the aqueous solution was determined. In the second trial, soil samples previously contaminated with DDT were treated with LRC and CSB. After 30 days of this interaction, the soil samples were immersed in water and the remaining DDT in solution was subsequently determined. The third trial was similar to the latter, but the interaction lasted for six months. In the first experiment, treatments with LRC and LRC + CSB, showed 8.16 and 3.4 % of remaining DDT respectively, thus indicating the retention of the compound in the soil. In the second trial, the treatment with CSB greatly reduced the bioavailable DDT (0.007 ppm), compared to the control (0.014 ppm); this is possible since these bacteria use DDT as a carbon source. In the third trial, the highest reduction in the bioavailability of DDT took place in LRC and LRC + CSB treatments; this trial also detected DDD produced from DDT transformation, which showed the same behavior; the interaction timeframe favors adsorption and copolymerization of pollutants to humified organic matter (HOM) in soil. Use of LRC as a source of HOM represents a promising strategy for the treatment of soils with low organic matter content affected by persistent organic pollutants such as DDT. |
---|