Non-linear parameter estimates from non-stationary MEG data

ABSTRACT: We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In orde...

Full description

Autores:
López Hincapié, José David
Castellanos Domínguez, César Germán
Barnes, Gareth Robert
Baker, Adam
Woolrich, Mark W.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/7662
Acceso en línea:
http://hdl.handle.net/10495/7662
Palabra clave:
MEG inverse problem
Co-registration
Hidden Markov Model
Non-stationary brain activity
Bayesian comparison
Rights
openAccess
License
Atribución 2.5 Colombia (CC BY 2.5 CO)
id UDEA2_c44df8cc09399d42b22f4a55e2bc1739
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/7662
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Non-linear parameter estimates from non-stationary MEG data
title Non-linear parameter estimates from non-stationary MEG data
spellingShingle Non-linear parameter estimates from non-stationary MEG data
MEG inverse problem
Co-registration
Hidden Markov Model
Non-stationary brain activity
Bayesian comparison
title_short Non-linear parameter estimates from non-stationary MEG data
title_full Non-linear parameter estimates from non-stationary MEG data
title_fullStr Non-linear parameter estimates from non-stationary MEG data
title_full_unstemmed Non-linear parameter estimates from non-stationary MEG data
title_sort Non-linear parameter estimates from non-stationary MEG data
dc.creator.fl_str_mv López Hincapié, José David
Castellanos Domínguez, César Germán
Barnes, Gareth Robert
Baker, Adam
Woolrich, Mark W.
dc.contributor.author.none.fl_str_mv López Hincapié, José David
Castellanos Domínguez, César Germán
Barnes, Gareth Robert
Baker, Adam
Woolrich, Mark W.
dc.subject.none.fl_str_mv MEG inverse problem
Co-registration
Hidden Markov Model
Non-stationary brain activity
Bayesian comparison
topic MEG inverse problem
Co-registration
Hidden Markov Model
Non-stationary brain activity
Bayesian comparison
description ABSTRACT: We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-07-14T20:26:32Z
dc.date.available.none.fl_str_mv 2017-07-14T20:26:32Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a86
http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Martínez, J. D., López, J. D., Castellanos, C. G., Barnes, G. R., Baker, Adam., & Woolrich, M.W. (2016). Non-linear parameter estimates from non-stationary MEG data. Frontiers in Neuroscience, 10(366), 1-9. DOI: 10.3389/fnins.2016.00366
dc.identifier.issn.none.fl_str_mv 1662-4548
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/7662
dc.identifier.doi.none.fl_str_mv 10.3389/fnins.2016.00366
dc.identifier.eissn.none.fl_str_mv 166-2453
identifier_str_mv Martínez, J. D., López, J. D., Castellanos, C. G., Barnes, G. R., Baker, Adam., & Woolrich, M.W. (2016). Non-linear parameter estimates from non-stationary MEG data. Frontiers in Neuroscience, 10(366), 1-9. DOI: 10.3389/fnins.2016.00366
1662-4548
10.3389/fnins.2016.00366
166-2453
url http://hdl.handle.net/10495/7662
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Atribución 2.5 Colombia (CC BY 2.5 CO)
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Atribución 2.5 Colombia (CC BY 2.5 CO)
https://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Frontiers Media
dc.publisher.group.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.publisher.place.spa.fl_str_mv Suiza
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/1/LopezJose_2016_NonlinearParameterEstimates.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/2/license_url
http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/3/license_text
http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/4/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/5/license.txt
bitstream.checksum.fl_str_mv 6920869c08b551cf596f4c49fde2e18b
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173221824299008
spelling López Hincapié, José DavidCastellanos Domínguez, César GermánBarnes, Gareth RobertBaker, AdamWoolrich, Mark W.2017-07-14T20:26:32Z2017-07-14T20:26:32Z2016Martínez, J. D., López, J. D., Castellanos, C. G., Barnes, G. R., Baker, Adam., & Woolrich, M.W. (2016). Non-linear parameter estimates from non-stationary MEG data. Frontiers in Neuroscience, 10(366), 1-9. DOI: 10.3389/fnins.2016.003661662-4548http://hdl.handle.net/10495/766210.3389/fnins.2016.00366166-2453ABSTRACT: We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast.8application/pdfengFrontiers MediaSistemas Embebidos e Inteligencia Computacional (SISTEMIC)Suizainfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a86http://purl.org/coar/version/c_970fb48d4fbd8a85Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/MEG inverse problemCo-registrationHidden Markov ModelNon-stationary brain activityBayesian comparisonNon-linear parameter estimates from non-stationary MEG dataFrontiers in Neuroscience1910366ORIGINALLopezJose_2016_NonlinearParameterEstimates.pdfLopezJose_2016_NonlinearParameterEstimates.pdfArtículo de investigaciónapplication/pdf3465602http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/1/LopezJose_2016_NonlinearParameterEstimates.pdf6920869c08b551cf596f4c49fde2e18bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/7662/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5510495/7662oai:bibliotecadigital.udea.edu.co:10495/76622021-06-18 09:00:38.025Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=