Extremal values of VDB topological indices over catacondensed polyomino systems

ABSTRACT: A VDB topological index is defined as T = T (G) = X 1≤i≤j≤n−1 mijϕi,j , where G is a graph with n vertices and mij is the number of ij-edges. We study T over the set of catacondensed polyomino systems. Specifically, we introduce two unbranching operations and show that under certain condit...

Full description

Autores:
Cruz Rodes, Roberto
Rada Rincón, Juan Pablo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26798
Acceso en línea:
http://hdl.handle.net/10495/26798
Palabra clave:
Extreme values
Valores extremos
VDB indices
Catacondensed polyomino systems
Polyomino chains
http://aims.fao.org/aos/agrovoc/c_8e611af8
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_bdd57f5a0e0c1e534840aaa2dfc6d9e1
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/26798
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Extremal values of VDB topological indices over catacondensed polyomino systems
title Extremal values of VDB topological indices over catacondensed polyomino systems
spellingShingle Extremal values of VDB topological indices over catacondensed polyomino systems
Extreme values
Valores extremos
VDB indices
Catacondensed polyomino systems
Polyomino chains
http://aims.fao.org/aos/agrovoc/c_8e611af8
title_short Extremal values of VDB topological indices over catacondensed polyomino systems
title_full Extremal values of VDB topological indices over catacondensed polyomino systems
title_fullStr Extremal values of VDB topological indices over catacondensed polyomino systems
title_full_unstemmed Extremal values of VDB topological indices over catacondensed polyomino systems
title_sort Extremal values of VDB topological indices over catacondensed polyomino systems
dc.creator.fl_str_mv Cruz Rodes, Roberto
Rada Rincón, Juan Pablo
dc.contributor.author.none.fl_str_mv Cruz Rodes, Roberto
Rada Rincón, Juan Pablo
dc.subject.agrovoc.none.fl_str_mv Extreme values
Valores extremos
topic Extreme values
Valores extremos
VDB indices
Catacondensed polyomino systems
Polyomino chains
http://aims.fao.org/aos/agrovoc/c_8e611af8
dc.subject.proposal.spa.fl_str_mv VDB indices
Catacondensed polyomino systems
Polyomino chains
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_8e611af8
description ABSTRACT: A VDB topological index is defined as T = T (G) = X 1≤i≤j≤n−1 mijϕi,j , where G is a graph with n vertices and mij is the number of ij-edges. We study T over the set of catacondensed polyomino systems. Specifically, we introduce two unbranching operations and show that under certain conditions on {ϕij}, T is monotone with respect to these operations. We apply these results to find extremal values of T over the set of catacondensed polyomino systems.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2022-03-22T21:46:23Z
dc.date.available.none.fl_str_mv 2022-03-22T21:46:23Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Cruz, R., & Rada, J. (2016). Extremal values of VDB topological indices over catacondensed polyomino systems. Appl. Math. Sci, 10, 487-501. http://dx.doi.org/10.12988/ams.2016.59613
dc.identifier.issn.none.fl_str_mv 1312-885X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/26798
dc.identifier.doi.none.fl_str_mv 10.12988/ams.2016.59613
dc.identifier.eissn.none.fl_str_mv 1314-7552
identifier_str_mv Cruz, R., & Rada, J. (2016). Extremal values of VDB topological indices over catacondensed polyomino systems. Appl. Math. Sci, 10, 487-501. http://dx.doi.org/10.12988/ams.2016.59613
1312-885X
10.12988/ams.2016.59613
1314-7552
url http://hdl.handle.net/10495/26798
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Appl. Math. Sci.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
dc.format.extent.spa.fl_str_mv 15
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Hikari
dc.publisher.group.spa.fl_str_mv Álgebra U de A
dc.publisher.place.spa.fl_str_mv Bulgaria
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/26798/2/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/26798/3/license.txt
http://bibliotecadigital.udea.edu.co/bitstream/10495/26798/1/CruzRoberto_2016_VDBTopologicalPolyomino.pdf
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
440922d3043142e7050dc9087f3d0b8c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173128169684992
spelling Cruz Rodes, RobertoRada Rincón, Juan Pablo2022-03-22T21:46:23Z2022-03-22T21:46:23Z2016Cruz, R., & Rada, J. (2016). Extremal values of VDB topological indices over catacondensed polyomino systems. Appl. Math. Sci, 10, 487-501. http://dx.doi.org/10.12988/ams.2016.596131312-885Xhttp://hdl.handle.net/10495/2679810.12988/ams.2016.596131314-7552ABSTRACT: A VDB topological index is defined as T = T (G) = X 1≤i≤j≤n−1 mijϕi,j , where G is a graph with n vertices and mij is the number of ij-edges. We study T over the set of catacondensed polyomino systems. Specifically, we introduce two unbranching operations and show that under certain conditions on {ϕij}, T is monotone with respect to these operations. We apply these results to find extremal values of T over the set of catacondensed polyomino systems.COL008689615application/pdfengHikariÁlgebra U de ABulgariainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Extremal values of VDB topological indices over catacondensed polyomino systemsExtreme valuesValores extremosVDB indicesCatacondensed polyomino systemsPolyomino chainshttp://aims.fao.org/aos/agrovoc/c_8e611af8Appl. Math. Sci.Applied Mathematical Sciences4875011010CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927http://bibliotecadigital.udea.edu.co/bitstream/10495/26798/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/26798/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALCruzRoberto_2016_VDBTopologicalPolyomino.pdfCruzRoberto_2016_VDBTopologicalPolyomino.pdfArtículo de investigaciónapplication/pdf257990http://bibliotecadigital.udea.edu.co/bitstream/10495/26798/1/CruzRoberto_2016_VDBTopologicalPolyomino.pdf440922d3043142e7050dc9087f3d0b8cMD5110495/26798oai:bibliotecadigital.udea.edu.co:10495/267982022-03-22 16:46:23.549Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=