Some equivalences between homotopy and derived categories
ABSTRACT: We prove two triangle equivalences. One is the triangle equivalence between the homotopy category of the bounded below complexes of Ext-injectives objects of a closed by subobjects and co-resolving subcategory of an abelian category and the derived category of the bounded below complexes o...
- Autores:
-
Giraldo Salazar, Hernán Alonso
Moreno Cañadas, Agustín
Saldarriaga Ortiz, Omar Darío
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30843
- Acceso en línea:
- https://hdl.handle.net/10495/30843
- Palabra clave:
- Equivalencias de homotopía
Homotopy equivalences
Teoría de homotopía
Homotopy theory
Grupos abelianos
Abelian groups
Topología algebraica
Algebraic topology
Derived category
Triangulated category
Homotopy category
Auto-orthogonal category
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id |
UDEA2_b0cc38ccfcbb5bb750621a2791e94e5e |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30843 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Some equivalences between homotopy and derived categories |
title |
Some equivalences between homotopy and derived categories |
spellingShingle |
Some equivalences between homotopy and derived categories Equivalencias de homotopía Homotopy equivalences Teoría de homotopía Homotopy theory Grupos abelianos Abelian groups Topología algebraica Algebraic topology Derived category Triangulated category Homotopy category Auto-orthogonal category |
title_short |
Some equivalences between homotopy and derived categories |
title_full |
Some equivalences between homotopy and derived categories |
title_fullStr |
Some equivalences between homotopy and derived categories |
title_full_unstemmed |
Some equivalences between homotopy and derived categories |
title_sort |
Some equivalences between homotopy and derived categories |
dc.creator.fl_str_mv |
Giraldo Salazar, Hernán Alonso Moreno Cañadas, Agustín Saldarriaga Ortiz, Omar Darío |
dc.contributor.author.none.fl_str_mv |
Giraldo Salazar, Hernán Alonso Moreno Cañadas, Agustín Saldarriaga Ortiz, Omar Darío |
dc.subject.lemb.none.fl_str_mv |
Equivalencias de homotopía Homotopy equivalences Teoría de homotopía Homotopy theory Grupos abelianos Abelian groups Topología algebraica Algebraic topology |
topic |
Equivalencias de homotopía Homotopy equivalences Teoría de homotopía Homotopy theory Grupos abelianos Abelian groups Topología algebraica Algebraic topology Derived category Triangulated category Homotopy category Auto-orthogonal category |
dc.subject.proposal.spa.fl_str_mv |
Derived category Triangulated category Homotopy category Auto-orthogonal category |
description |
ABSTRACT: We prove two triangle equivalences. One is the triangle equivalence between the homotopy category of the bounded below complexes of Ext-injectives objects of a closed by subobjects and co-resolving subcategory of an abelian category and the derived category of the bounded below complexes over The other triangle equivalence is between the homotopy category of the bounded cohomology and bounded below complexes over a strongly closed by cokernels of monomorphisms and auto-orthogonal subcategory of an abelian category and the derived category of the bounded cohomology and bounded below complexes over |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2022-09-25T00:49:47Z |
dc.date.available.none.fl_str_mv |
2022-09-25T00:49:47Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0972-0871 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30843 |
dc.identifier.doi.none.fl_str_mv |
10.17654/FJMSSep2015_001_014 |
dc.identifier.eissn.none.fl_str_mv |
0971-4332 |
identifier_str_mv |
0972-0871 10.17654/FJMSSep2015_001_014 0971-4332 |
url |
https://hdl.handle.net/10495/30843 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.extent.spa.fl_str_mv |
14 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Allahabad |
dc.publisher.group.spa.fl_str_mv |
Álgebra Teoría de Números y Aplicaciones: ERM Álgebra U de A |
dc.publisher.place.spa.fl_str_mv |
Allahabad, India |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/30843/1/GiraldoHernan_2015_SomeEquivalencesBetween%20.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30843/2/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30843/3/license.txt |
bitstream.checksum.fl_str_mv |
32ada6c16bfb793ecaadc00e1dd57fd2 e2060682c9c70d4d30c83c51448f4eed 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173265381097472 |
spelling |
Giraldo Salazar, Hernán AlonsoMoreno Cañadas, AgustínSaldarriaga Ortiz, Omar Darío2022-09-25T00:49:47Z2022-09-25T00:49:47Z20150972-0871https://hdl.handle.net/10495/3084310.17654/FJMSSep2015_001_0140971-4332ABSTRACT: We prove two triangle equivalences. One is the triangle equivalence between the homotopy category of the bounded below complexes of Ext-injectives objects of a closed by subobjects and co-resolving subcategory of an abelian category and the derived category of the bounded below complexes over The other triangle equivalence is between the homotopy category of the bounded cohomology and bounded below complexes over a strongly closed by cokernels of monomorphisms and auto-orthogonal subcategory of an abelian category and the derived category of the bounded cohomology and bounded below complexes overCOL0086896COL001721714application/pdfengUniversidad de AllahabadÁlgebra Teoría de Números y Aplicaciones: ERMÁlgebra U de AAllahabad, Indiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Some equivalences between homotopy and derived categoriesEquivalencias de homotopíaHomotopy equivalencesTeoría de homotopíaHomotopy theoryGrupos abelianosAbelian groupsTopología algebraicaAlgebraic topologyDerived categoryTriangulated categoryHomotopy categoryAuto-orthogonal categoryFar East Journal of Mathematical Sciences114981ORIGINALGiraldoHernan_2015_SomeEquivalencesBetween .pdfGiraldoHernan_2015_SomeEquivalencesBetween .pdfArtículo de investigaciónapplication/pdf122392https://bibliotecadigital.udea.edu.co/bitstream/10495/30843/1/GiraldoHernan_2015_SomeEquivalencesBetween%20.pdf32ada6c16bfb793ecaadc00e1dd57fd2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstream/10495/30843/2/license_rdfe2060682c9c70d4d30c83c51448f4eedMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30843/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/30843oai:bibliotecadigital.udea.edu.co:10495/308432022-09-24 19:49:48.037Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |