Aproximación bayesiana para predecir los riesgos del cambio climático en el municipio de Pasto

RESUMEN : El clima es un elemento que influye en la estructura social de las comunidades agrupadas en pueblos y ciudades. Sin embargo, a nivel global experimenta cambios significativos asociados al incremento de los gases de efecto invernadero, que impactan a nivel local, generando nuevas dinámicas...

Full description

Autores:
Ortega Chamorro, Luis Carlos
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/31446
Acceso en línea:
https://hdl.handle.net/10495/31446
Palabra clave:
Métodos de simulación
Cambio climático
Climate change
Gestión del riesgo de desastres
Disaster risk management
Impacto ambiental
Environmental impact
Enfoque sistémico
Modelo de simulación
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_1374063074675
http://aims.fao.org/aos/agrovoc/c_24420
Rights
embargoedAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
Description
Summary:RESUMEN : El clima es un elemento que influye en la estructura social de las comunidades agrupadas en pueblos y ciudades. Sin embargo, a nivel global experimenta cambios significativos asociados al incremento de los gases de efecto invernadero, que impactan a nivel local, generando nuevas dinámicas territoriales, que agudizan las ya existentes (economía, medios de producción, salud, recursos naturales, entre otros). Si bien estos fenómenos son estudiados ampliamente en grandes ciudades, a nivel de ciudades o comunidades intermedias y pequeñas, su estudio aún no es relevante. Por lo tanto, en esta investigación, pretendemos describir los impactos y los riesgos del cambio climático mediante un estudio de caso de la región Andina aplicado en el municipio de Pasto (Colombia), con una ciudad intermedia que alberga a más del 80% de su población, ubicada en el nodo de los Pastos de la Cordillera de las Andes, con una morfología de montaña y altas pendientes, que lo hace susceptible frente al cambio climático. La metodología propuesta consistió en utilizar el método de análisis estructural para reconocer y establecer las relaciones causales de los elementos que describen sistémicamente el desarrollo del municipio. Posteriormente, con la prueba de estabilidad, identificamos que las series de tiempo de temperatura y precipitación del periodo 2006-2019, cambiaron significativamente respecto al periodo 1976-2005, lo que permite inferior que se está gestando un cambio en el clima local. De ahí que, con la información disponible, las relaciones causales identificadas, y el método correlacional, definimos matemáticamente las relaciones entre las variables climáticas y las urbanas en el periodo 2004-2019, con el fin reconocer las trayectorias que siguen las variables urbanas impactadas por la variabilidad del clima. Las trayectorias identificadas siguen modelos cuadráticos, es decir, que pequeños cambios en las variables de temperatura y precipitación producen alteraciones significativas en las variables urbanas (el impacto crece exponencialmente). Finalmente, con base en los modelos correlaciones, y los escenarios de cambio climático, diseñamos un modelo estocástico con redes bayesianas que nos permitió predecir los riesgos de las variables urbanas a corto (2011-2040), mediano (2041-2070) y largo plazo (2071-2100), donde los elementos más comprometidos son los relacionados con disponibilidad de agua, producción agrícola, seguridad alimentaria, desastres (inundaciones, deslizamientos de tierra e incendios forestales) y salud pública.