Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment

En los mercados del día anterior, diariamente se lleva a cabo un proceso de optimización en el cual se decide las unidades que deben ser despachadas para atender la demanda. Este proceso es conocido como el Security Constraint Unit Commitment (SCUC). En la literatura, se encuentran múltiples variaci...

Full description

Autores:
Ramírez Londoño, Edwar Alejandro
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/47612
Acceso en línea:
https://hdl.handle.net/10495/47612
Palabra clave:
Pérdidas eléctricas
Electric losses
Factor de potencia eléctrica
Electric power factor
Economía de la energía
Energy economics
Abastecimiento de energía
Energy supply
Ingeniería eléctrica - medidas de seguridad
Electric engineering - safety measures
Unit Commitment, Perdidas de Potencia Activa, AGC, Co-Optimización
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_ae27b5d883c1ebcabffab8f55864abd0
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/47612
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment
title Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment
spellingShingle Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment
Pérdidas eléctricas
Electric losses
Factor de potencia eléctrica
Electric power factor
Economía de la energía
Energy economics
Abastecimiento de energía
Energy supply
Ingeniería eléctrica - medidas de seguridad
Electric engineering - safety measures
Unit Commitment, Perdidas de Potencia Activa, AGC, Co-Optimización
title_short Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment
title_full Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment
title_fullStr Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment
title_full_unstemmed Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment
title_sort Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment
dc.creator.fl_str_mv Ramírez Londoño, Edwar Alejandro
dc.contributor.advisor.none.fl_str_mv Velilla Hernández, Esteban
Mejía Giraldo, Diego Adolfo
dc.contributor.author.none.fl_str_mv Ramírez Londoño, Edwar Alejandro
dc.contributor.researchgroup.none.fl_str_mv Grupo de Manejo Eficiente de la Energía (GIMEL)
dc.contributor.jury.none.fl_str_mv Carreño, Oscar Mauricio
Correa Posada, Carlos Mario
dc.subject.lemb.none.fl_str_mv Pérdidas eléctricas
Electric losses
Factor de potencia eléctrica
Electric power factor
Economía de la energía
Energy economics
Abastecimiento de energía
Energy supply
Ingeniería eléctrica - medidas de seguridad
Electric engineering - safety measures
topic Pérdidas eléctricas
Electric losses
Factor de potencia eléctrica
Electric power factor
Economía de la energía
Energy economics
Abastecimiento de energía
Energy supply
Ingeniería eléctrica - medidas de seguridad
Electric engineering - safety measures
Unit Commitment, Perdidas de Potencia Activa, AGC, Co-Optimización
dc.subject.proposal.none.fl_str_mv Unit Commitment, Perdidas de Potencia Activa, AGC, Co-Optimización
description En los mercados del día anterior, diariamente se lleva a cabo un proceso de optimización en el cual se decide las unidades que deben ser despachadas para atender la demanda. Este proceso es conocido como el Security Constraint Unit Commitment (SCUC). En la literatura, se encuentran múltiples variaciones al SCUC que buscan incorporar en el problema aspectos que permitan tener en cuenta variables adicionales en el modelo. Lo anterior apunta a obtener resultados que se aproximen a la respuesta de los sistemas reales y buscan incluir restricciones en el modelo para mejorar la seguridad del sistema. El aporte de la investigación se basa en proponer una estrategia de co-optimización para resolver el SCUC teniendo en cuenta las pérdidas de potencia activa, la regulación de reserva secundaria y escenarios de operación que resultan de la materialización del AGC cumpliendo el criterio de seguridad N-1. Adicionalmente, se propone un método de selección de restricciones en el cual se busca tener en cuenta sólo las que están activas. La estrategia de co-optimización fue validada con sistema de pruebas IEEE 30 y 118 barras. Los resultados permitieron reducción del tamaño del problema y los tiempos de solución. Se comparan los resultados con el modelo DC, razón por la cual se evaluaron los flujos de carga en Matpower con la finalidad de evidenciar las mejoras en los flujos de potencia activa, las pérdidas de potencia activa, la cargabilidad de las ramas y el cumplimiento de la seguridad del sistema.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-09T16:32:27Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.citation.none.fl_str_mv E. Ramirez Londoño, “Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment”, Tesis de maestría, Maestría en Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/47612
identifier_str_mv E. Ramirez Londoño, “Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment”, Tesis de maestría, Maestría en Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025
url https://hdl.handle.net/10495/47612
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv M. C. and A. C. R. Oneill, “FERC: Industries - Optimal Power Flow and Formulation Papers,” 2012.
B. Stott, J. Jardim, and O. Alsaç, “DC power flow revisited,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, 2009.
B. F. W. and G. B. S. A. J. Wood, Power Generation, Operation, and Control, 3rd ed. John Wiley & Sons, Inc., Hoboken, New Jersey, 2014.
R. Chhetri, B. Venkatesh, and E. F. Hill, “Security Constraints Unit Commitment for a Multi-Regional Electricity Market,” Science (80-. )., 1996.
G. Gutierrez-Alcaraz, B. Diaz-Lopez, J. M. Arroyo, and V. H. Hinojosa, “Large-Scale Preventive Security-Constrained Unit Commitment Considering N-k Line Outages and Transmission Losses,” IEEE Trans. Power Syst., vol. 8950, no. c, 2021.
C. C. Marín-Cano, J. E. Sierra-Aguilar, J. M. López-Lezama, Á. Jaramillo-Duque, and W. M. Villa-Acevedo, “Implementation of user cuts and linear sensitivity factors to improve the computational performance of the security-constrained unit commitment problem,” Energies, vol. 12, no. 7, pp. 1–20, 2019.
Y. Chen, A. Casto, F. Wang, Q. Wang, X. Wang, and J. Wan, “Improving Large Scale Day-Ahead Security Constrained Unit Commitment Performance,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4732–4743, Nov. 2016.
D. A. Tejada-Arango, P. Sanchez-Martin, and A. Ramos, “Security constrained unit commitment using line outage distribution factors,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 329–337, 2018.
A. Nasri, S. J. Kazempour, A. J. Conejo, and M. Ghandhari, “Network-Constrained AC Unit Commitment Under Uncertainty: A Benders Decomposition Approach,” IEEE Transactions on Power Systems, vol. 31, no. 1. pp. 412–422, 2016.
L. Merkert, M. Mendros, and A. Berthold, “Optimal unit commitment in microgrids with frequency reserve constraints,” Proc. 2017 IEEE 14th Int. Conf. Networking, Sens. Control. ICNSC 2017, pp. 429–434, 2017.
P. Yang, C. Zhu, L. Zhao, M. Wang, Y. Liu, and X. Ning, “Spinning reserve optimization based on unit commitment with loss-of-load-probability constraint,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2016-Decem, no. 51407106, pp. 1409–1412, 2016.
C. Li, M. Zhang, and K. W. Hedman, “N-1 Reliable Unit Commitment via Progressive Hedging,” J. Energy Eng., vol. 141, no. 1, 2015.
M. Xiang, M. Zhou, Z. Zhang, and Y. Liu, “Wind power multi-scenario state transition based unit commitment and reserve optimization,” IET Conf. Publ., vol. 2012, no. 611 CP, 2012.
H. Abdi, “Profit-based unit commitment problem: A review of models, methods, challenges, and future directions,” Renew. Sustain. Energy Rev., vol. 138, no. March 2020, p. 110504, 2021.
A. Velloso, A. Street, D. Pozo, J. M. Arroyo, and N. G. Cobos, “Two-stage robust unit commitment for co-optimized electricity markets: An adaptive data-driven approach for scenario-based uncertainty sets,” IEEE Trans. Sustain. Energy, vol. 11, no. 2, pp. 958–969, 2020.
H. Ye, Y. Ge, M. Shahidehpour, and Z. Li, “Uncertainty Marginal Price, Transmission Reserve, and Day-Ahead Market Clearing with Robust Unit Commitment,” IEEE Trans. Power Syst., vol. 32, no. 3, pp. 1782–1795, 2017.
N. Yang, Z. Dong, L. Wu, S. Member, L. Zhang, and X. Shen, “A Comprehensive Review of Security-Constrained Unit Commitment,” J. Mod. Power Syst. Clean Energy, 2021.
P. Bendotti, P. Fouilhoux, and C. Rottner, “On the complexity of the Unit Commitment Problem,” Ann. Oper. Res., vol. 274, no. 1–2, pp. 119–130, 2019.
D. Bienstock and A. Verma, “Strong NP-hardness of AC power flows feasibility,” Oper. Res. Lett., vol. 47, no. 6, pp. 494–501, 2019.
Nidhi, S. Reddy, R. Kumar, and B. K. Panigrahi, “Binary Bat Search Algorithm for Unit Commitment Problem in Power system,” WIECON-ECE 2017 - IEEE Int. WIE Conf. Electr. Comput. Eng. 2017, no. December, pp. 121–124, 2018.
J. Lang, L. Tang, and Z. Zhang, “An improved binary particle swarm optimization for unit commitment problem,” Asia-Pacific Power Energy Eng. Conf. APPEEC, 2010.
S. Marrouchi, M. Ben Hessine, and S. Chebbi, “Unit commitment scheduling using hybrid metaheuristic and deterministic methods: Theoretical investigation and comparative study,” Proc. Int. Conf. Adv. Syst. Electr. Technol. IC_ASET 2017, pp. 250–255, 2017.
G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem,” IEEE Transactions on Power Systems, vol. 28, no. 4. pp. 4897–4908, 2013.
B. Eldridge, R. P. O’Neill, and A. Castillo, “Marginal Loss Calculations for the DCOPF,” FERC Tech. Rep. Loss Estim., pp. 1–30, 2017.
B. Eldridge, R. O’Neill, and A. Castillo, “An Improved Method for the DCOPF with Losses,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3779–3788, 2018.
V. Sarkar and S. A. Khaparde, “DCOPF-based marginal loss pricing with enhanced power flow accuracy by using matrix loss distribution,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1435–1445, 2009.
F. Li and R. Bo, “DCOPF-based LMP simulation: Algorithm, comparison with ACOPF, and sensitivity,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1475–1485, 2007.
P. Sánchez-Martín and A. Ramos, “Modeling transmission ohmic losses in a stochastic bulk production cost model,” Inst. Res. Technol. Madrid, 1997.
T. N. Dos Santos and A. L. Diniz, “A dynamic piecewise linear model for DC transmission losses in optimal scheduling problems,” IEEE Trans. Power Syst., vol. 26, no. 2, pp. 508–519, 2011.
S. R. Vaishya and V. Sarkar, “Accurate loss modelling in the DCOPF calculation for power markets via static piecewise linear loss approximation based upon line loading classification,” Electr. Power Syst. Res., vol. 170, no. January, pp. 150–157, 2019.
E. Litvinov, T. Zheng, G. Rosenwald, and P. Shamsollahi, “Marginal loss modeling in LMP calculation,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 880–888, 2004.
O. W. Akinbode and K. W. Hedman, “Fictitious losses in the DCOPF with a piecewise linear approximation of losses,” IEEE Power Energy Soc. Gen. Meet., no. 5, 2013.
D. Z. Fitiwi, L. Olmos, M. Rivier, F. de Cuadra, and I. J. Pérez-Arriaga, “Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources,” Energy, vol. 101, pp. 343–358, 2016.
F. Li, “Fully reference-independent LMP decomposition using reference-independent loss factors,” Electr. Power Syst. Res., vol. 81, no. 11, pp. 1995–2004, 2011.
M. Garcia, R. Baldick, and S. Siddiqi, “A general economic dispatch problem with marginal losses,” Proc. Am. Control Conf., vol. 2019-July, pp. 2588–2595, 2019.
V. Siriariyaporn and M. Robinson, “Co-optimization of energy and operating reserve in real-time electricity markets,” Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on. pp. 577–582, 2008.
P. González, J. Villar, C. A. D??az, and F. A. Campos, “Joint energy and reserve markets: Current implementations and modeling trends,” Electr. Power Syst. Res., vol. 109, pp. 101–111, 2014.
X. Ma, Y. Chen, and J. Wan, “Midwest iso co-optimization based real-time dispatch and pricing of energy and ancillary services,” Power & Energy Society General Meeting, 2009. PES ’09. IEEE. pp. 1–6, 2009.
J. Tan, Q. Wu, Q. Hu, W. Wei, and F. Liu, “Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty,” Appl. Energy, vol. 260, no. August 2019, p. 114230, 2020.
M. A. Mirzaei, A. S. Yazdankhah, B. Mohammadi-Ivatloo, M. Marzband, M. Shafie-khah, and J. P. S. Catalão, “Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage system,” J. Clean. Prod., vol. 223, pp. 747–758, 2019.
G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 476–488, 2014.
E. Nycander, G. Morales-España, and L. Söder, “Security constrained unit commitment with continuous time-varying reserves,” Electr. Power Syst. Res., vol. 199, no. March, 2021.
A. J. Ardakani and F. Bouffard, “Identification of Umbrella Constraints in DC-Based Security-Constrained Optimal Power Flow,” IEEE Transactions on Power Systems, vol. 28, no. 4. pp. 3924–3934, 2013.
A. J. Ardakani and F. Bouffard, “Acceleration of Umbrella Constraint Discovery in Generation Scheduling Problems,” IEEE Transactions on Power Systems, vol. 30, no. 4. pp. 2100–2109, 2015.
D. A. Tejada-Arango, S. Wogrin, P. Sanchez-Martin, and A. Ramos, “Unit commitment with ACOPF constraints: Practical experience with solution techniques,” 2019 IEEE Milan PowerTech, PowerTech 2019, 2019.
D. K. Molzahn and I. A. Hiskens, “A Survey of Relaxations and Approximations of the Power Flow Equations,” A Surv. Relaxations Approx. Power Flow Equations, vol. 4, no. 1, pp. 1–221, 2019.
S. H. Low, “Convex Relaxation of Optimal Power Flow - Part II: Exactness,” IEEE Trans. Control Netw. Syst., vol. 1, no. 2, pp. 177–189, 2014.
S. H. Low, “Convex relaxation of optimal power flow - Part i: Formulations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 15–27, 2014.
B. Kocuk, S. S. Dey, and X. Andy Sun, “Strong SOCP relaxations for the optimal power flow problem,” Oper. Res., vol. 64, no. 6, pp. 1177–1196, 2016.
M. Yilmaz and M. E. El-Hawary, “Contingency analysis via SDP relaxations of the OPF problem,” 2017 IEEE 7th Int. Conf. Power Energy Syst. ICPES 2017, vol. 2017-Decem, pp. 7–11, 2017.
E. Dumon, M. Ruiz, H. Godard, and J. Maeght, “SDP resolution techniques for the optimal power flow with unit commitment,” 2017 IEEE Manchester PowerTech, Powertech 2017, vol. 2, no. 1, 2017.
Y. Bai et al., “Improved Spot Market Clearing model based on DC Power Flow Model Based with PTDF Corrections,” Proc. 2021 IEEE 4th Int. Electr. Energy Conf. CIEEC 2021, pp. 5–9, 2021.
Z. Zhou, T. Levin, and G. Conzelmann, “Survey of U.S. Ancillary Services Markets,” p. 59, 2016.
C. D’Ambrosio, A. Lodi, and S. Martello, “Piecewise linear approximation of functions of two variables in MILP models,” Oper. Res. Lett., vol. 38, no. 1, pp. 39–46, 2010.
S. I. Nanou, G. N. Psarros, and S. A. Papathanassiou, “Network-constrained unit commitment with piecewise linear AC power flow constraints,” Electr. Power Syst. Res., vol. 195, no. October 2020, p. 107125, 2021, doi: 10.1016/j.epsr.2021.107125.
H. Zhang, V. Vittal, G. T. Heydt, and J. Quintero, “A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1125–1133, 2012, doi: 10.1109/TPWRS.2011.2178000.
E. Ibanez, I. Krad, and E. Ela, “A systematic comparison of operating reserve methodologies,” IEEE Power Energy Soc. Gen. Meet., vol. 2014-Octob, no. October, 2014.
E. Ela, M. Milligan, and B. Kirby, “Operating Reserves and Variable Generation,” Contract, no. August, pp. 1–103, 2011.
G. C. Ejebe and B. F. Wollenberg, “Automatic Contingency Selection,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-98, no. 1. pp. 97–109, 1979, doi: 10.1109/TPAS.1979.319518.
University of Washington, “Power Systems Test Case Archive,” 1999. https://labs.ece.uw.edu/pstca/ (accessed Oct. 20, 2021).
C. E. M.-S. anchez Ray D. Zimmerman, “Matpower 7.1,” 2020. https://matpower.org/about/get-started/ (accessed Feb. 19, 2022).
R. D. Zimmerman, C. E. Murillo-Sanchez, and T. R. J, “Matpower: Steady- State Operations, Planning and Analysis Tools for Power Systems Research and Education,” Power Syst. IEEE Trans., vol. 26, no. 1, pp. 12–19, 2011, [Online]. Available: http://www.pserc.cornell.edu/matpower.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 62 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Maestría en Ingeniería
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/325220bd-9fe2-4e97-81da-8895816cc286/download
https://bibliotecadigital.udea.edu.co/bitstreams/4f4cbb78-15e8-40a6-9fa3-dd8833761599/download
https://bibliotecadigital.udea.edu.co/bitstreams/38981444-a2d8-4eb1-98e0-4455eeae1e4b/download
https://bibliotecadigital.udea.edu.co/bitstreams/fd097b22-000c-4971-8fbc-df7ba6d7dd83/download
https://bibliotecadigital.udea.edu.co/bitstreams/30bf030d-b3ae-47d3-8419-517f81b57b37/download
bitstream.checksum.fl_str_mv 1ea4ca1b6f5fb70cf1f0c5b69318744d
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
6a7bcb646fac97db588156b2acb51aae
6c0e71f9d77109f7b5a00fb2c67a33ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052649991897088
spelling Velilla Hernández, EstebanMejía Giraldo, Diego AdolfoRamírez Londoño, Edwar AlejandroGrupo de Manejo Eficiente de la Energía (GIMEL)Carreño, Oscar MauricioCorrea Posada, Carlos Mario2025-10-09T16:32:27Z2025E. Ramirez Londoño, “Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit Commitment”, Tesis de maestría, Maestría en Ingeniería, Universidad de Antioquia, Medellín, Antioquia, Colombia, 2025https://hdl.handle.net/10495/47612En los mercados del día anterior, diariamente se lleva a cabo un proceso de optimización en el cual se decide las unidades que deben ser despachadas para atender la demanda. Este proceso es conocido como el Security Constraint Unit Commitment (SCUC). En la literatura, se encuentran múltiples variaciones al SCUC que buscan incorporar en el problema aspectos que permitan tener en cuenta variables adicionales en el modelo. Lo anterior apunta a obtener resultados que se aproximen a la respuesta de los sistemas reales y buscan incluir restricciones en el modelo para mejorar la seguridad del sistema. El aporte de la investigación se basa en proponer una estrategia de co-optimización para resolver el SCUC teniendo en cuenta las pérdidas de potencia activa, la regulación de reserva secundaria y escenarios de operación que resultan de la materialización del AGC cumpliendo el criterio de seguridad N-1. Adicionalmente, se propone un método de selección de restricciones en el cual se busca tener en cuenta sólo las que están activas. La estrategia de co-optimización fue validada con sistema de pruebas IEEE 30 y 118 barras. Los resultados permitieron reducción del tamaño del problema y los tiempos de solución. Se comparan los resultados con el modelo DC, razón por la cual se evaluaron los flujos de carga en Matpower con la finalidad de evidenciar las mejoras en los flujos de potencia activa, las pérdidas de potencia activa, la cargabilidad de las ramas y el cumplimiento de la seguridad del sistema.In day-ahead markets, an optimization process is carried out daily to determine the units that must be dispatched to meet demand. This process is known as the Security-Constrained Unit Commitment (SCUC). In the literature, multiple variations of the SCUC can be found, aiming to incorporate additional aspects into the problem that allow the model to account for more variables. These efforts seek to obtain results that better approximate the behavior of real systems and include constraints in the model to improve system security. The contribution of this research lies in proposing a co-optimization strategy to solve the SCUC while considering active power losses, secondary reserve regulation, and operational scenarios resulting from the activation of AGC (Automatic Generation Control), fulfilling the N-1 security criterion. Additionally, a constraint selection method is proposed, which aims to consider only the active constraints. The co-optimization strategy was validated using the IEEE 30-bus and 118-bus test systems. The results showed a reduction in problem size and solution times. The outcomes were compared with the DC model, and power flow simulations were carried out in MATPOWER to highlight improvements in active power flows, active power losses, branch loading, and compliance with system security requirements.COL0010477MaestríaMagíster en Ingeniería62 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en IngenieríaFacultad de IngenieríaCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Metodología para la inclusión de las pérdidas de potencia activa y escenarios de seguridad considerando el AGC en el Unit CommitmentTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftM. C. and A. C. R. Oneill, “FERC: Industries - Optimal Power Flow and Formulation Papers,” 2012.B. Stott, J. Jardim, and O. Alsaç, “DC power flow revisited,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, 2009.B. F. W. and G. B. S. A. J. Wood, Power Generation, Operation, and Control, 3rd ed. John Wiley & Sons, Inc., Hoboken, New Jersey, 2014.R. Chhetri, B. Venkatesh, and E. F. Hill, “Security Constraints Unit Commitment for a Multi-Regional Electricity Market,” Science (80-. )., 1996.G. Gutierrez-Alcaraz, B. Diaz-Lopez, J. M. Arroyo, and V. H. Hinojosa, “Large-Scale Preventive Security-Constrained Unit Commitment Considering N-k Line Outages and Transmission Losses,” IEEE Trans. Power Syst., vol. 8950, no. c, 2021.C. C. Marín-Cano, J. E. Sierra-Aguilar, J. M. López-Lezama, Á. Jaramillo-Duque, and W. M. Villa-Acevedo, “Implementation of user cuts and linear sensitivity factors to improve the computational performance of the security-constrained unit commitment problem,” Energies, vol. 12, no. 7, pp. 1–20, 2019.Y. Chen, A. Casto, F. Wang, Q. Wang, X. Wang, and J. Wan, “Improving Large Scale Day-Ahead Security Constrained Unit Commitment Performance,” IEEE Trans. Power Syst., vol. 31, no. 6, pp. 4732–4743, Nov. 2016.D. A. Tejada-Arango, P. Sanchez-Martin, and A. Ramos, “Security constrained unit commitment using line outage distribution factors,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 329–337, 2018.A. Nasri, S. J. Kazempour, A. J. Conejo, and M. Ghandhari, “Network-Constrained AC Unit Commitment Under Uncertainty: A Benders Decomposition Approach,” IEEE Transactions on Power Systems, vol. 31, no. 1. pp. 412–422, 2016.L. Merkert, M. Mendros, and A. Berthold, “Optimal unit commitment in microgrids with frequency reserve constraints,” Proc. 2017 IEEE 14th Int. Conf. Networking, Sens. Control. ICNSC 2017, pp. 429–434, 2017.P. Yang, C. Zhu, L. Zhao, M. Wang, Y. Liu, and X. Ning, “Spinning reserve optimization based on unit commitment with loss-of-load-probability constraint,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2016-Decem, no. 51407106, pp. 1409–1412, 2016.C. Li, M. Zhang, and K. W. Hedman, “N-1 Reliable Unit Commitment via Progressive Hedging,” J. Energy Eng., vol. 141, no. 1, 2015.M. Xiang, M. Zhou, Z. Zhang, and Y. Liu, “Wind power multi-scenario state transition based unit commitment and reserve optimization,” IET Conf. Publ., vol. 2012, no. 611 CP, 2012.H. Abdi, “Profit-based unit commitment problem: A review of models, methods, challenges, and future directions,” Renew. Sustain. Energy Rev., vol. 138, no. March 2020, p. 110504, 2021.A. Velloso, A. Street, D. Pozo, J. M. Arroyo, and N. G. Cobos, “Two-stage robust unit commitment for co-optimized electricity markets: An adaptive data-driven approach for scenario-based uncertainty sets,” IEEE Trans. Sustain. Energy, vol. 11, no. 2, pp. 958–969, 2020.H. Ye, Y. Ge, M. Shahidehpour, and Z. Li, “Uncertainty Marginal Price, Transmission Reserve, and Day-Ahead Market Clearing with Robust Unit Commitment,” IEEE Trans. Power Syst., vol. 32, no. 3, pp. 1782–1795, 2017.N. Yang, Z. Dong, L. Wu, S. Member, L. Zhang, and X. Shen, “A Comprehensive Review of Security-Constrained Unit Commitment,” J. Mod. Power Syst. Clean Energy, 2021.P. Bendotti, P. Fouilhoux, and C. Rottner, “On the complexity of the Unit Commitment Problem,” Ann. Oper. Res., vol. 274, no. 1–2, pp. 119–130, 2019.D. Bienstock and A. Verma, “Strong NP-hardness of AC power flows feasibility,” Oper. Res. Lett., vol. 47, no. 6, pp. 494–501, 2019.Nidhi, S. Reddy, R. Kumar, and B. K. Panigrahi, “Binary Bat Search Algorithm for Unit Commitment Problem in Power system,” WIECON-ECE 2017 - IEEE Int. WIE Conf. Electr. Comput. Eng. 2017, no. December, pp. 121–124, 2018.J. Lang, L. Tang, and Z. Zhang, “An improved binary particle swarm optimization for unit commitment problem,” Asia-Pacific Power Energy Eng. Conf. APPEEC, 2010.S. Marrouchi, M. Ben Hessine, and S. Chebbi, “Unit commitment scheduling using hybrid metaheuristic and deterministic methods: Theoretical investigation and comparative study,” Proc. Int. Conf. Adv. Syst. Electr. Technol. IC_ASET 2017, pp. 250–255, 2017.G. Morales-Espana, J. M. Latorre, and A. Ramos, “Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem,” IEEE Transactions on Power Systems, vol. 28, no. 4. pp. 4897–4908, 2013.B. Eldridge, R. P. O’Neill, and A. Castillo, “Marginal Loss Calculations for the DCOPF,” FERC Tech. Rep. Loss Estim., pp. 1–30, 2017.B. Eldridge, R. O’Neill, and A. Castillo, “An Improved Method for the DCOPF with Losses,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3779–3788, 2018.V. Sarkar and S. A. Khaparde, “DCOPF-based marginal loss pricing with enhanced power flow accuracy by using matrix loss distribution,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1435–1445, 2009.F. Li and R. Bo, “DCOPF-based LMP simulation: Algorithm, comparison with ACOPF, and sensitivity,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1475–1485, 2007.P. Sánchez-Martín and A. Ramos, “Modeling transmission ohmic losses in a stochastic bulk production cost model,” Inst. Res. Technol. Madrid, 1997.T. N. Dos Santos and A. L. Diniz, “A dynamic piecewise linear model for DC transmission losses in optimal scheduling problems,” IEEE Trans. Power Syst., vol. 26, no. 2, pp. 508–519, 2011.S. R. Vaishya and V. Sarkar, “Accurate loss modelling in the DCOPF calculation for power markets via static piecewise linear loss approximation based upon line loading classification,” Electr. Power Syst. Res., vol. 170, no. January, pp. 150–157, 2019.E. Litvinov, T. Zheng, G. Rosenwald, and P. Shamsollahi, “Marginal loss modeling in LMP calculation,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 880–888, 2004.O. W. Akinbode and K. W. Hedman, “Fictitious losses in the DCOPF with a piecewise linear approximation of losses,” IEEE Power Energy Soc. Gen. Meet., no. 5, 2013.D. Z. Fitiwi, L. Olmos, M. Rivier, F. de Cuadra, and I. J. Pérez-Arriaga, “Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources,” Energy, vol. 101, pp. 343–358, 2016.F. Li, “Fully reference-independent LMP decomposition using reference-independent loss factors,” Electr. Power Syst. Res., vol. 81, no. 11, pp. 1995–2004, 2011.M. Garcia, R. Baldick, and S. Siddiqi, “A general economic dispatch problem with marginal losses,” Proc. Am. Control Conf., vol. 2019-July, pp. 2588–2595, 2019.V. Siriariyaporn and M. Robinson, “Co-optimization of energy and operating reserve in real-time electricity markets,” Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on. pp. 577–582, 2008.P. González, J. Villar, C. A. D??az, and F. A. Campos, “Joint energy and reserve markets: Current implementations and modeling trends,” Electr. Power Syst. Res., vol. 109, pp. 101–111, 2014.X. Ma, Y. Chen, and J. Wan, “Midwest iso co-optimization based real-time dispatch and pricing of energy and ancillary services,” Power & Energy Society General Meeting, 2009. PES ’09. IEEE. pp. 1–6, 2009.J. Tan, Q. Wu, Q. Hu, W. Wei, and F. Liu, “Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty,” Appl. Energy, vol. 260, no. August 2019, p. 114230, 2020.M. A. Mirzaei, A. S. Yazdankhah, B. Mohammadi-Ivatloo, M. Marzband, M. Shafie-khah, and J. P. S. Catalão, “Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage system,” J. Clean. Prod., vol. 223, pp. 747–758, 2019.G. Morales-Espana, A. Ramos, and J. Garcia-Gonzalez, “An MIP formulation for joint market-clearing of energy and reserves based on ramp scheduling,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 476–488, 2014.E. Nycander, G. Morales-España, and L. Söder, “Security constrained unit commitment with continuous time-varying reserves,” Electr. Power Syst. Res., vol. 199, no. March, 2021.A. J. Ardakani and F. Bouffard, “Identification of Umbrella Constraints in DC-Based Security-Constrained Optimal Power Flow,” IEEE Transactions on Power Systems, vol. 28, no. 4. pp. 3924–3934, 2013.A. J. Ardakani and F. Bouffard, “Acceleration of Umbrella Constraint Discovery in Generation Scheduling Problems,” IEEE Transactions on Power Systems, vol. 30, no. 4. pp. 2100–2109, 2015.D. A. Tejada-Arango, S. Wogrin, P. Sanchez-Martin, and A. Ramos, “Unit commitment with ACOPF constraints: Practical experience with solution techniques,” 2019 IEEE Milan PowerTech, PowerTech 2019, 2019.D. K. Molzahn and I. A. Hiskens, “A Survey of Relaxations and Approximations of the Power Flow Equations,” A Surv. Relaxations Approx. Power Flow Equations, vol. 4, no. 1, pp. 1–221, 2019.S. H. Low, “Convex Relaxation of Optimal Power Flow - Part II: Exactness,” IEEE Trans. Control Netw. Syst., vol. 1, no. 2, pp. 177–189, 2014.S. H. Low, “Convex relaxation of optimal power flow - Part i: Formulations and equivalence,” IEEE Trans. Control Netw. Syst., vol. 1, no. 1, pp. 15–27, 2014.B. Kocuk, S. S. Dey, and X. Andy Sun, “Strong SOCP relaxations for the optimal power flow problem,” Oper. Res., vol. 64, no. 6, pp. 1177–1196, 2016.M. Yilmaz and M. E. El-Hawary, “Contingency analysis via SDP relaxations of the OPF problem,” 2017 IEEE 7th Int. Conf. Power Energy Syst. ICPES 2017, vol. 2017-Decem, pp. 7–11, 2017.E. Dumon, M. Ruiz, H. Godard, and J. Maeght, “SDP resolution techniques for the optimal power flow with unit commitment,” 2017 IEEE Manchester PowerTech, Powertech 2017, vol. 2, no. 1, 2017.Y. Bai et al., “Improved Spot Market Clearing model based on DC Power Flow Model Based with PTDF Corrections,” Proc. 2021 IEEE 4th Int. Electr. Energy Conf. CIEEC 2021, pp. 5–9, 2021.Z. Zhou, T. Levin, and G. Conzelmann, “Survey of U.S. Ancillary Services Markets,” p. 59, 2016.C. D’Ambrosio, A. Lodi, and S. Martello, “Piecewise linear approximation of functions of two variables in MILP models,” Oper. Res. Lett., vol. 38, no. 1, pp. 39–46, 2010.S. I. Nanou, G. N. Psarros, and S. A. Papathanassiou, “Network-constrained unit commitment with piecewise linear AC power flow constraints,” Electr. Power Syst. Res., vol. 195, no. October 2020, p. 107125, 2021, doi: 10.1016/j.epsr.2021.107125.H. Zhang, V. Vittal, G. T. Heydt, and J. Quintero, “A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1125–1133, 2012, doi: 10.1109/TPWRS.2011.2178000.E. Ibanez, I. Krad, and E. Ela, “A systematic comparison of operating reserve methodologies,” IEEE Power Energy Soc. Gen. Meet., vol. 2014-Octob, no. October, 2014.E. Ela, M. Milligan, and B. Kirby, “Operating Reserves and Variable Generation,” Contract, no. August, pp. 1–103, 2011.G. C. Ejebe and B. F. Wollenberg, “Automatic Contingency Selection,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-98, no. 1. pp. 97–109, 1979, doi: 10.1109/TPAS.1979.319518.University of Washington, “Power Systems Test Case Archive,” 1999. https://labs.ece.uw.edu/pstca/ (accessed Oct. 20, 2021).C. E. M.-S. anchez Ray D. Zimmerman, “Matpower 7.1,” 2020. https://matpower.org/about/get-started/ (accessed Feb. 19, 2022).R. D. Zimmerman, C. E. Murillo-Sanchez, and T. R. J, “Matpower: Steady- State Operations, Planning and Analysis Tools for Power Systems Research and Education,” Power Syst. IEEE Trans., vol. 26, no. 1, pp. 12–19, 2011, [Online]. Available: http://www.pserc.cornell.edu/matpower.Pérdidas eléctricasElectric lossesFactor de potencia eléctricaElectric power factorEconomía de la energíaEnergy economicsAbastecimiento de energíaEnergy supplyIngeniería eléctrica - medidas de seguridadElectric engineering - safety measuresUnit Commitment, Perdidas de Potencia Activa, AGC, Co-OptimizaciónPublicationORIGINALRamirezEdwar_2025_MetodologiaPerdidaspotenciaRamirezEdwar_2025_MetodologiaPerdidaspotenciaTesis de maestríaapplication/pdf2164297https://bibliotecadigital.udea.edu.co/bitstreams/325220bd-9fe2-4e97-81da-8895816cc286/download1ea4ca1b6f5fb70cf1f0c5b69318744dMD55trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/4f4cbb78-15e8-40a6-9fa3-dd8833761599/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/38981444-a2d8-4eb1-98e0-4455eeae1e4b/download5643bfd9bcf29d560eeec56d584edaa9MD56falseAnonymousREADTEXTRamirezEdwar_2025_MetodologiaPerdidaspotencia.txtRamirezEdwar_2025_MetodologiaPerdidaspotencia.txtExtracted texttext/plain104621https://bibliotecadigital.udea.edu.co/bitstreams/fd097b22-000c-4971-8fbc-df7ba6d7dd83/download6a7bcb646fac97db588156b2acb51aaeMD57falseAnonymousREADTHUMBNAILRamirezEdwar_2025_MetodologiaPerdidaspotencia.jpgRamirezEdwar_2025_MetodologiaPerdidaspotencia.jpgGenerated Thumbnailimage/jpeg7213https://bibliotecadigital.udea.edu.co/bitstreams/30bf030d-b3ae-47d3-8419-517f81b57b37/download6c0e71f9d77109f7b5a00fb2c67a33adMD58falseAnonymousREAD10495/47612oai:bibliotecadigital.udea.edu.co:10495/476122025-10-10 04:10:57.18http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=