Distribution of the product of independent extended beta variables
ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1−x) β−1 exp[−σ/x(1−x)], 0 < x < 1. In this article, we derive the probability density function of the product of two independent random variables each having an extended beta type 1 dis...
- Autores:
-
Nagar, Daya Krishna
Zarrazola Rivera, Edwin de Jesús
Sánchez Herrera, Luz Estela
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/26792
- Acceso en línea:
- http://hdl.handle.net/10495/26792
- Palabra clave:
- Funciones hipergeométricas
Hypergeometric functions
Beta distribution
Extended beta function
Gamma distribution
Gauss hypergeometric function
Inverted gamma distribution
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
id |
UDEA2_99157abb3ac10313912b45ba0f3346ff |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/26792 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Distribution of the product of independent extended beta variables |
title |
Distribution of the product of independent extended beta variables |
spellingShingle |
Distribution of the product of independent extended beta variables Funciones hipergeométricas Hypergeometric functions Beta distribution Extended beta function Gamma distribution Gauss hypergeometric function Inverted gamma distribution |
title_short |
Distribution of the product of independent extended beta variables |
title_full |
Distribution of the product of independent extended beta variables |
title_fullStr |
Distribution of the product of independent extended beta variables |
title_full_unstemmed |
Distribution of the product of independent extended beta variables |
title_sort |
Distribution of the product of independent extended beta variables |
dc.creator.fl_str_mv |
Nagar, Daya Krishna Zarrazola Rivera, Edwin de Jesús Sánchez Herrera, Luz Estela |
dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Zarrazola Rivera, Edwin de Jesús Sánchez Herrera, Luz Estela |
dc.subject.lemb.none.fl_str_mv |
Funciones hipergeométricas Hypergeometric functions |
topic |
Funciones hipergeométricas Hypergeometric functions Beta distribution Extended beta function Gamma distribution Gauss hypergeometric function Inverted gamma distribution |
dc.subject.proposal.spa.fl_str_mv |
Beta distribution Extended beta function Gamma distribution Gauss hypergeometric function Inverted gamma distribution |
description |
ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1−x) β−1 exp[−σ/x(1−x)], 0 < x < 1. In this article, we derive the probability density function of the product of two independent random variables each having an extended beta type 1 distribution. We also consider several other products involving extended beta type 1, beta type 1, beta type 2, beta type 3, Kummer-beta and inverted gamma variables. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2022-03-22T21:38:46Z |
dc.date.available.none.fl_str_mv |
2022-03-22T21:38:46Z |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
dc.type.local.spa.fl_str_mv |
Artículo de investigación |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Nagar, D., Zarrazola, E., & Sánchez, L. (2014). Distribution of the product of independent extended beta variables. Applied Mathematical Sciences, 8(161), 8007-8019. http://dx.doi.org/10.12988/ams.2014.410814 |
dc.identifier.issn.none.fl_str_mv |
1312-885X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/26792 |
dc.identifier.doi.none.fl_str_mv |
10.12988/ams.2014.410814 |
dc.identifier.eissn.none.fl_str_mv |
1314-7552 |
identifier_str_mv |
Nagar, D., Zarrazola, E., & Sánchez, L. (2014). Distribution of the product of independent extended beta variables. Applied Mathematical Sciences, 8(161), 8007-8019. http://dx.doi.org/10.12988/ams.2014.410814 1312-885X 10.12988/ams.2014.410814 1314-7552 |
url |
http://hdl.handle.net/10495/26792 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Appl. Math. Sci. |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by/4.0/ |
dc.format.extent.spa.fl_str_mv |
13 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Hikari |
dc.publisher.group.spa.fl_str_mv |
Análisis Multivariado |
dc.publisher.place.spa.fl_str_mv |
Bulgaria |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/26792/1/NagarDaya_2014_ProductIndependentBeta.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/26792/2/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/26792/3/license.txt |
bitstream.checksum.fl_str_mv |
760b0fffbc0c8179246fa4d363515e04 1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173305971474432 |
spelling |
Nagar, Daya KrishnaZarrazola Rivera, Edwin de JesúsSánchez Herrera, Luz Estela2022-03-22T21:38:46Z2022-03-22T21:38:46Z2014Nagar, D., Zarrazola, E., & Sánchez, L. (2014). Distribution of the product of independent extended beta variables. Applied Mathematical Sciences, 8(161), 8007-8019. http://dx.doi.org/10.12988/ams.2014.4108141312-885Xhttp://hdl.handle.net/10495/2679210.12988/ams.2014.4108141314-7552ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1−x) β−1 exp[−σ/x(1−x)], 0 < x < 1. In this article, we derive the probability density function of the product of two independent random variables each having an extended beta type 1 distribution. We also consider several other products involving extended beta type 1, beta type 1, beta type 2, beta type 3, Kummer-beta and inverted gamma variables.COL000053213application/pdfengHikariAnálisis MultivariadoBulgariainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Distribution of the product of independent extended beta variablesFunciones hipergeométricasHypergeometric functionsBeta distributionExtended beta functionGamma distributionGauss hypergeometric functionInverted gamma distributionAppl. Math. Sci.Applied Mathematical Sciences800780198161ORIGINALNagarDaya_2014_ProductIndependentBeta.pdfNagarDaya_2014_ProductIndependentBeta.pdfArtículo de investigaciónapplication/pdf216148https://bibliotecadigital.udea.edu.co/bitstream/10495/26792/1/NagarDaya_2014_ProductIndependentBeta.pdf760b0fffbc0c8179246fa4d363515e04MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstream/10495/26792/2/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/26792/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/26792oai:bibliotecadigital.udea.edu.co:10495/267922023-04-11 16:13:30.639Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |