Distribution of the product of independent extended beta variables

ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1−x) β−1 exp[−σ/x(1−x)], 0 < x < 1. In this article, we derive the probability density function of the product of two independent random variables each having an extended beta type 1 dis...

Full description

Autores:
Nagar, Daya Krishna
Zarrazola Rivera, Edwin de Jesús
Sánchez Herrera, Luz Estela
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26792
Acceso en línea:
http://hdl.handle.net/10495/26792
Palabra clave:
Funciones hipergeométricas
Hypergeometric functions
Beta distribution
Extended beta function
Gamma distribution
Gauss hypergeometric function
Inverted gamma distribution
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
Description
Summary:ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1−x) β−1 exp[−σ/x(1−x)], 0 < x < 1. In this article, we derive the probability density function of the product of two independent random variables each having an extended beta type 1 distribution. We also consider several other products involving extended beta type 1, beta type 1, beta type 2, beta type 3, Kummer-beta and inverted gamma variables.