Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries

ABSTRACT: All-solid-state Li-ion batteries (ASSB) are one of the future alternatives for electrochemical energy storage, because it exhibits high energy density and safety. The solid electrolyte in the ASSB is a key element to improve the stability and reduce the flammability of lithium batteries [1...

Full description

Autores:
Mena Palacios, Maycol Francisco
Vásquez Arroyave, Ferley Alejandro
Calderón Gutiérrez, Jorge Andrés
Tipo de recurso:
http://purl.org/coar/resource_type/c_5794
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/33174
Acceso en línea:
https://hdl.handle.net/10495/33174
Palabra clave:
Batería de ion de litio
Lithium ion batteries
Perovskite (Mineral)
Perovskita (Mineral)
Baterías eléctricas
Electric batteries
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh88007689
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia
id UDEA2_9667ee7874c16c4279def0e2db038cbd
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/33174
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries
title Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries
spellingShingle Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries
Batería de ion de litio
Lithium ion batteries
Perovskite (Mineral)
Perovskita (Mineral)
Baterías eléctricas
Electric batteries
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh88007689
title_short Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries
title_full Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries
title_fullStr Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries
title_full_unstemmed Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries
title_sort Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteries
dc.creator.fl_str_mv Mena Palacios, Maycol Francisco
Vásquez Arroyave, Ferley Alejandro
Calderón Gutiérrez, Jorge Andrés
dc.contributor.author.none.fl_str_mv Mena Palacios, Maycol Francisco
Vásquez Arroyave, Ferley Alejandro
Calderón Gutiérrez, Jorge Andrés
dc.contributor.conferencename.spa.fl_str_mv Congreso Colombiano de Electroquímica (5 : 06 de octubre de 2022 : Universidad de la Amazonía, Florencia, Caquetá, Colombia)
dc.subject.lcsh.none.fl_str_mv Batería de ion de litio
Lithium ion batteries
Perovskite (Mineral)
Perovskita (Mineral)
topic Batería de ion de litio
Lithium ion batteries
Perovskite (Mineral)
Perovskita (Mineral)
Baterías eléctricas
Electric batteries
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh88007689
dc.subject.lemb.none.fl_str_mv Baterías eléctricas
Electric batteries
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh88007689
description ABSTRACT: All-solid-state Li-ion batteries (ASSB) are one of the future alternatives for electrochemical energy storage, because it exhibits high energy density and safety. The solid electrolyte in the ASSB is a key element to improve the stability and reduce the flammability of lithium batteries [1]–[3]. Solid electrolytes can inhibit dendrites formation in lithium batteries during the charge-discharge processes extending the cycle life. Nevertheless, ASSBs industrial and commercial development have some challenges associated with the lower li-ion conductivity of solid electrolytes (1.0x10–4S/cm) respect to the liquid electrolytes (1.0x10–2S/cm), as well as high interfacial resistance due to the poor contact and interfacial reactions between the solid electrolyte and active materials. Perovskite-type oxides [4] and sulfide-type [5] are promising solid electrolytes for all-solid-state batteries. Although the Li0.34La0.51TiO2.94 perovskite(ABO3) shows high chemical stability, high bulk ionic conductivity (1.0x10–3S/cm), the total ionic conductivity is lower (1.96x10−5S/cm) because of the grain boundary resistance, which reduces the +transport[6]. To reduce the grain-boundary resistance it has been proposed the reduction the activation energy. Doping the B site of the perovskite structure with cations of smaller ionic radius is an alternative to decrease the interatomic bonding forces and improve the lithium conductivity [7]. In this work, we present the synthesis of the Li0.34La0.51Ti1-xVxO3(x=0-0.05) using the sol-gel method followed by a sintering process at high temperature (1200°C) as a potential solid electrolyte for Li-ion batteries. The XRD pattern indicates the formation of Li0.34La0.51Ti1-xVxO3 with perovskite structure in the orthorhombic crystalline system, showing a decrease of the unit cell with the vanadium doping, which can be attributed to the V+5 substitution, which has an ionic radius (0.54Å), lower than Ti+4(0.605Å) in B cation of perovskite structure. The solid electrolyte Li0.34La0.51TiO3 without vanadium exhibits the highest total ionic conductivity 4.54x10-5S/cm, and the Li0.34La0.51Ti0.98V0.02O3 exhibits the best grain conductivity (7.43x10-4S/cm).
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-06
dc.date.accessioned.none.fl_str_mv 2023-01-19T15:02:57Z
dc.date.available.none.fl_str_mv 2023-01-19T15:02:57Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_5794
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/EC
dc.type.local.spa.fl_str_mv Documento de conferencia
format http://purl.org/coar/resource_type/c_5794
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/33174
url https://hdl.handle.net/10495/33174
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.group.spa.fl_str_mv Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)
dc.publisher.place.spa.fl_str_mv Florencia, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/33174/1/Maycol_2022_Presentacion.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/33174/2/Resumen.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/33174/3/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/33174/4/license.txt
bitstream.checksum.fl_str_mv 68e39d941fd1efc52652cfd1186853f8
78ce23a3e8168c7413ba48647659f105
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173250804842496
spelling Mena Palacios, Maycol FranciscoVásquez Arroyave, Ferley AlejandroCalderón Gutiérrez, Jorge AndrésCongreso Colombiano de Electroquímica (5 : 06 de octubre de 2022 : Universidad de la Amazonía, Florencia, Caquetá, Colombia)2023-01-19T15:02:57Z2023-01-19T15:02:57Z2022-10-06https://hdl.handle.net/10495/33174ABSTRACT: All-solid-state Li-ion batteries (ASSB) are one of the future alternatives for electrochemical energy storage, because it exhibits high energy density and safety. The solid electrolyte in the ASSB is a key element to improve the stability and reduce the flammability of lithium batteries [1]–[3]. Solid electrolytes can inhibit dendrites formation in lithium batteries during the charge-discharge processes extending the cycle life. Nevertheless, ASSBs industrial and commercial development have some challenges associated with the lower li-ion conductivity of solid electrolytes (1.0x10–4S/cm) respect to the liquid electrolytes (1.0x10–2S/cm), as well as high interfacial resistance due to the poor contact and interfacial reactions between the solid electrolyte and active materials. Perovskite-type oxides [4] and sulfide-type [5] are promising solid electrolytes for all-solid-state batteries. Although the Li0.34La0.51TiO2.94 perovskite(ABO3) shows high chemical stability, high bulk ionic conductivity (1.0x10–3S/cm), the total ionic conductivity is lower (1.96x10−5S/cm) because of the grain boundary resistance, which reduces the +transport[6]. To reduce the grain-boundary resistance it has been proposed the reduction the activation energy. Doping the B site of the perovskite structure with cations of smaller ionic radius is an alternative to decrease the interatomic bonding forces and improve the lithium conductivity [7]. In this work, we present the synthesis of the Li0.34La0.51Ti1-xVxO3(x=0-0.05) using the sol-gel method followed by a sintering process at high temperature (1200°C) as a potential solid electrolyte for Li-ion batteries. The XRD pattern indicates the formation of Li0.34La0.51Ti1-xVxO3 with perovskite structure in the orthorhombic crystalline system, showing a decrease of the unit cell with the vanadium doping, which can be attributed to the V+5 substitution, which has an ionic radius (0.54Å), lower than Ti+4(0.605Å) in B cation of perovskite structure. The solid electrolyte Li0.34La0.51TiO3 without vanadium exhibits the highest total ionic conductivity 4.54x10-5S/cm, and the Li0.34La0.51Ti0.98V0.02O3 exhibits the best grain conductivity (7.43x10-4S/cm).COL0007927application/pdfenginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/resource_type/c_5794http://purl.org/coar/resource_type/c_c94fhttps://purl.org/redcol/resource_type/ECDocumento de conferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Batería de ion de litioLithium ion batteriesPerovskite (Mineral)Perovskita (Mineral)Baterías eléctricasElectric batterieshttp://id.loc.gov/authorities/subjects/sh2011000687http://id.loc.gov/authorities/subjects/sh88007689Synthesis and characterization of the V-doped Li0.3La0.57Ti1-xVxO3 solid electrolyte for all-solid state lithium-ion batteriesCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)Florencia, ColombiaV Congreso Colombiano de ElectroquímicaUniversidad de la Amazonía, Florencia, Caquetá Colombia2022-10-03-/2022-10-07Sostenibilidad Energética para Colombia, SÉNECAUniversidad de Antioquiagrid.412881.6201926930ORIGINALMaycol_2022_Presentacion.pdfMaycol_2022_Presentacion.pdfPresentaciónapplication/pdf1896733https://bibliotecadigital.udea.edu.co/bitstream/10495/33174/1/Maycol_2022_Presentacion.pdf68e39d941fd1efc52652cfd1186853f8MD51Resumen.pdfResumen.pdfResumenapplication/pdf380349https://bibliotecadigital.udea.edu.co/bitstream/10495/33174/2/Resumen.pdf78ce23a3e8168c7413ba48647659f105MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstream/10495/33174/3/license_rdfe2060682c9c70d4d30c83c51448f4eedMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/33174/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5410495/33174oai:bibliotecadigital.udea.edu.co:10495/331742023-01-19 10:02:57.743Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=