Two generalized bivariate FGM distributions and rank reduction

ABSTRACT: The Farlie-Gumbel-Morgensten (FGM) family of bivariate distributions with given marginals, is frequently used in theory and applications and has been generalized in many ways. With the help of two auxiliary distributions, we propose another generalization and study its properties. After de...

Full description

Autores:
Cuadras, Carles M.
Diaz, Walter
Salvo Garrido, Sonia
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30624
Acceso en línea:
https://hdl.handle.net/10495/30624
Palabra clave:
Dependence (Statistics)
Distribución (Teoría de probabilidades)
Distribution (probability theory)
Copulas bivariadas
Distribución Farlie-Gumbel-Morgensten
https://lccn.loc.gov/sh2001002906
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_9565d3ec40e3290c3e9594e6b74329fb
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30624
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Two generalized bivariate FGM distributions and rank reduction
title Two generalized bivariate FGM distributions and rank reduction
spellingShingle Two generalized bivariate FGM distributions and rank reduction
Dependence (Statistics)
Distribución (Teoría de probabilidades)
Distribution (probability theory)
Copulas bivariadas
Distribución Farlie-Gumbel-Morgensten
https://lccn.loc.gov/sh2001002906
title_short Two generalized bivariate FGM distributions and rank reduction
title_full Two generalized bivariate FGM distributions and rank reduction
title_fullStr Two generalized bivariate FGM distributions and rank reduction
title_full_unstemmed Two generalized bivariate FGM distributions and rank reduction
title_sort Two generalized bivariate FGM distributions and rank reduction
dc.creator.fl_str_mv Cuadras, Carles M.
Diaz, Walter
Salvo Garrido, Sonia
dc.contributor.author.none.fl_str_mv Cuadras, Carles M.
Diaz, Walter
Salvo Garrido, Sonia
dc.subject.lcsh.none.fl_str_mv Dependence (Statistics)
topic Dependence (Statistics)
Distribución (Teoría de probabilidades)
Distribution (probability theory)
Copulas bivariadas
Distribución Farlie-Gumbel-Morgensten
https://lccn.loc.gov/sh2001002906
dc.subject.lemb.none.fl_str_mv Distribución (Teoría de probabilidades)
Distribution (probability theory)
dc.subject.proposal.spa.fl_str_mv Copulas bivariadas
Distribución Farlie-Gumbel-Morgensten
dc.subject.lcshuri.none.fl_str_mv https://lccn.loc.gov/sh2001002906
description ABSTRACT: The Farlie-Gumbel-Morgensten (FGM) family of bivariate distributions with given marginals, is frequently used in theory and applications and has been generalized in many ways. With the help of two auxiliary distributions, we propose another generalization and study its properties. After defining the rank of a distribution as the cardinal of the set of canonical correlations, we prove that some well-known distributions have practically rank two. Consequently we introduce several extended FGM families of rank two and study how to approximate any bivariate distribution to a simpler one belonging to this family.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2022-09-13T20:12:27Z
dc.date.available.none.fl_str_mv 2022-09-13T20:12:27Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/CJournalArticle
dc.type.local.spa.fl_str_mv Artículo de revista
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0361-0926
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30624
dc.identifier.doi.none.fl_str_mv 10.1080/03610926.2019.1620780
dc.identifier.eissn.none.fl_str_mv 1532-415X
identifier_str_mv 0361-0926
10.1080/03610926.2019.1620780
1532-415X
url https://hdl.handle.net/10495/30624
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor & Francis Group
dc.publisher.group.spa.fl_str_mv GIFI - Grupo de Investigación en Finanzas de la UdeA
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/30624/1/CuadrasCarles_2022_TwoGeneralizedFGMDistributions.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30624/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30624/3/license.txt
bitstream.checksum.fl_str_mv d62857aa5b2371025812fcf436032f63
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173212494069760
spelling Cuadras, Carles M.Diaz, WalterSalvo Garrido, Sonia2022-09-13T20:12:27Z2022-09-13T20:12:27Z20190361-0926https://hdl.handle.net/10495/3062410.1080/03610926.2019.16207801532-415XABSTRACT: The Farlie-Gumbel-Morgensten (FGM) family of bivariate distributions with given marginals, is frequently used in theory and applications and has been generalized in many ways. With the help of two auxiliary distributions, we propose another generalization and study its properties. After defining the rank of a distribution as the cardinal of the set of canonical correlations, we prove that some well-known distributions have practically rank two. Consequently we introduce several extended FGM families of rank two and study how to approximate any bivariate distribution to a simpler one belonging to this family.application/pdfengTaylor & Francis GroupGIFI - Grupo de Investigación en Finanzas de la UdeAinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/CJournalArticleArtículo de revistahttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Dependence (Statistics)Distribución (Teoría de probabilidades)Distribution (probability theory)Copulas bivariadasDistribución Farlie-Gumbel-Morgenstenhttps://lccn.loc.gov/sh2001002906Two generalized bivariate FGM distributions and rank reductionCommunications in Statistics - Theory and Methods563956654923ORIGINALCuadrasCarles_2022_TwoGeneralizedFGMDistributions.pdfCuadrasCarles_2022_TwoGeneralizedFGMDistributions.pdfArticulo de revistaapplication/pdf2880017https://bibliotecadigital.udea.edu.co/bitstream/10495/30624/1/CuadrasCarles_2022_TwoGeneralizedFGMDistributions.pdfd62857aa5b2371025812fcf436032f63MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/30624/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30624/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/30624oai:bibliotecadigital.udea.edu.co:10495/306242022-09-13 15:12:28.106Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=