Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia

RESUMEN : El objetivo principal es la predicción de las ventas en kilos por mes de los productos, esto para conocer con anticipación suficiente un estimado de la cantidad de materia prima necesaria para satisfacer la demanda futura y realizarse antes de las alzas de precios y negociar un precio de c...

Full description

Autores:
Usme Valencia, Mateo
Rojas Díaz, Jorge Iván
Tipo de recurso:
Tesis
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/29133
Acceso en línea:
http://hdl.handle.net/10495/29133
Palabra clave:
Aprendizaje automático (inteligencia artificial)
Machine learning
Análisis de series de tiempo
Time-series analysis
Análisis de regresión
Regression analysis
Pronostico de ventas
Sales forecasting
Técnicas de predicción
Forecasting
Venta al por menor
Retail marketing
http://aims.fao.org/aos/agrovoc/c_3041
http://aims.fao.org/aos/agrovoc/c_6536
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_873c8c18e9c1f4232d70f9929b1c4bb4
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/29133
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia
title Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia
spellingShingle Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia
Aprendizaje automático (inteligencia artificial)
Machine learning
Análisis de series de tiempo
Time-series analysis
Análisis de regresión
Regression analysis
Pronostico de ventas
Sales forecasting
Técnicas de predicción
Forecasting
Venta al por menor
Retail marketing
http://aims.fao.org/aos/agrovoc/c_3041
http://aims.fao.org/aos/agrovoc/c_6536
title_short Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia
title_full Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia
title_fullStr Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia
title_full_unstemmed Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia
title_sort Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en Antioquia
dc.creator.fl_str_mv Usme Valencia, Mateo
Rojas Díaz, Jorge Iván
dc.contributor.advisor.none.fl_str_mv Quiza Montealegre, Jhon Jair
dc.contributor.author.none.fl_str_mv Usme Valencia, Mateo
Rojas Díaz, Jorge Iván
dc.subject.lemb.none.fl_str_mv Aprendizaje automático (inteligencia artificial)
Machine learning
Análisis de series de tiempo
Time-series analysis
Análisis de regresión
Regression analysis
Pronostico de ventas
Sales forecasting
topic Aprendizaje automático (inteligencia artificial)
Machine learning
Análisis de series de tiempo
Time-series analysis
Análisis de regresión
Regression analysis
Pronostico de ventas
Sales forecasting
Técnicas de predicción
Forecasting
Venta al por menor
Retail marketing
http://aims.fao.org/aos/agrovoc/c_3041
http://aims.fao.org/aos/agrovoc/c_6536
dc.subject.agrovoc.none.fl_str_mv Técnicas de predicción
Forecasting
Venta al por menor
Retail marketing
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_3041
http://aims.fao.org/aos/agrovoc/c_6536
description RESUMEN : El objetivo principal es la predicción de las ventas en kilos por mes de los productos, esto para conocer con anticipación suficiente un estimado de la cantidad de materia prima necesaria para satisfacer la demanda futura y realizarse antes de las alzas de precios y negociar un precio de compra que permita generar rentabilidad con la posterior venta de los productos finales. Los datos proporcionados se componen de las fechas de la factura por cada venta desde el 2010 hasta el 2022, los registros de ventas en kilos, el código de producto, las categorías y subcategorías de los productos. Inicialmente la estrategia fue realizar la predicción de los valores de kilos con un modelo supervisado de regresión utilizando variables exógenas, posteriormente las iteraciones se realizaron con otras herramientas donde se utilizó modelos de regresión univariables apoyados del componente de tendencia y estacionalidad de los datos de un producto en específico para obtener mejores resultados que en las primeras iteraciones una vez se comparan con datos reales contra los predichos por el modelo final. El mejor resultado entre los modelos candidatos fue el del modelo ARIMA [1] el cual ofrece un pronóstico muy positivo en cuanto al problema de negocio que se desea afrontar. En una configuración óptima este tipo de modelos aprovechan muy bien el componente de estacionalidad en las series de tiempo y al tener esta ventaja los resultados suelen tener una precisión muy aceptable. El modelo ARIMA aprovecha la combinación de las propiedades Autorregresiva (AR), Integración (I) y Media Móvil (MA) para alcanzar el mejor resultado en los pronósticos de series de tiempo.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-13T14:49:28Z
dc.date.available.none.fl_str_mv 2022-06-13T14:49:28Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv info:eu-repo/semantics/other
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_46ec
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/COther
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
format http://purl.org/coar/resource_type/c_46ec
status_str draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/29133
url http://hdl.handle.net/10495/29133
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.spa.fl_str_mv 30
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Medellín - Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/29133/3/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/29133/4/license.txt
https://bibliotecadigital.udea.edu.co/bitstream/10495/29133/1/UsmeMateo_2022_ModelosPronosticoVentas.pdf
bitstream.checksum.fl_str_mv e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
28250397c37fbae4ffea721429c1934c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173099393613824
spelling Quiza Montealegre, Jhon JairUsme Valencia, MateoRojas Díaz, Jorge Iván2022-06-13T14:49:28Z2022-06-13T14:49:28Z2022http://hdl.handle.net/10495/29133RESUMEN : El objetivo principal es la predicción de las ventas en kilos por mes de los productos, esto para conocer con anticipación suficiente un estimado de la cantidad de materia prima necesaria para satisfacer la demanda futura y realizarse antes de las alzas de precios y negociar un precio de compra que permita generar rentabilidad con la posterior venta de los productos finales. Los datos proporcionados se componen de las fechas de la factura por cada venta desde el 2010 hasta el 2022, los registros de ventas en kilos, el código de producto, las categorías y subcategorías de los productos. Inicialmente la estrategia fue realizar la predicción de los valores de kilos con un modelo supervisado de regresión utilizando variables exógenas, posteriormente las iteraciones se realizaron con otras herramientas donde se utilizó modelos de regresión univariables apoyados del componente de tendencia y estacionalidad de los datos de un producto en específico para obtener mejores resultados que en las primeras iteraciones una vez se comparan con datos reales contra los predichos por el modelo final. El mejor resultado entre los modelos candidatos fue el del modelo ARIMA [1] el cual ofrece un pronóstico muy positivo en cuanto al problema de negocio que se desea afrontar. En una configuración óptima este tipo de modelos aprovechan muy bien el componente de estacionalidad en las series de tiempo y al tener esta ventaja los resultados suelen tener una precisión muy aceptable. El modelo ARIMA aprovecha la combinación de las propiedades Autorregresiva (AR), Integración (I) y Media Móvil (MA) para alcanzar el mejor resultado en los pronósticos de series de tiempo.30application/pdfspainfo:eu-repo/semantics/draftinfo:eu-repo/semantics/otherhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Pronóstico de ventas en kilos de un producto con ventas al por menor de una empresa de alimentos en AntioquiaMedellín - ColombiaAprendizaje automático (inteligencia artificial)Machine learningAnálisis de series de tiempoTime-series analysisAnálisis de regresiónRegression analysisPronostico de ventasSales forecastingTécnicas de predicciónForecastingVenta al por menorRetail marketinghttp://aims.fao.org/aos/agrovoc/c_3041http://aims.fao.org/aos/agrovoc/c_6536https://drive.google.com/file/d/1tpu3cv26IuN8xN4cU64nde0ZeFUgLDby/view?usp=sharingEspecialista en Analítica y Ciencia de DatosEspecializaciónFacultad de Ingeniería. Especialización en Analítica y Ciencia de DatosUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstream/10495/29133/3/license_rdfe2060682c9c70d4d30c83c51448f4eedMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/29133/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINALUsmeMateo_2022_ModelosPronosticoVentas.pdfUsmeMateo_2022_ModelosPronosticoVentas.pdfTrabajo de grado de especializaciónapplication/pdf2669014https://bibliotecadigital.udea.edu.co/bitstream/10495/29133/1/UsmeMateo_2022_ModelosPronosticoVentas.pdf28250397c37fbae4ffea721429c1934cMD5110495/29133oai:bibliotecadigital.udea.edu.co:10495/291332022-06-13 09:50:05.061Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=