A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)

ABSTRACT: We consider a fnite-dimensional Jordan superalgebra A over a feld of characteristic zero F such that N is the solvable radical of A. We proved that if N 2 = 0 and A∕N is isomorphic to simple Jordan superalgebra of Grassmann Poisson bracket Kan(2), then an analogous to Wedderburn Principal...

Full description

Autores:
Gómez González, Faber Alberto
Ramírez Bermúdez, Jhon Alexander
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35887
Acceso en línea:
https://hdl.handle.net/10495/35887
Palabra clave:
Superalgebras
http://id.loc.gov/authorities/subjects/sh94002765
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_86624b9d143e395c06387f177844dddf
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/35887
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)
title A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)
spellingShingle A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)
Superalgebras
http://id.loc.gov/authorities/subjects/sh94002765
title_short A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)
title_full A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)
title_fullStr A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)
title_full_unstemmed A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)
title_sort A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)
dc.creator.fl_str_mv Gómez González, Faber Alberto
Ramírez Bermúdez, Jhon Alexander
dc.contributor.author.none.fl_str_mv Gómez González, Faber Alberto
Ramírez Bermúdez, Jhon Alexander
dc.contributor.researchgroup.spa.fl_str_mv Álgebra U de A
dc.subject.lcsh.none.fl_str_mv Superalgebras
topic Superalgebras
http://id.loc.gov/authorities/subjects/sh94002765
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh94002765
description ABSTRACT: We consider a fnite-dimensional Jordan superalgebra A over a feld of characteristic zero F such that N is the solvable radical of A. We proved that if N 2 = 0 and A∕N is isomorphic to simple Jordan superalgebra of Grassmann Poisson bracket Kan(2), then an analogous to Wedderburn Principal Theorem (WPT) holds.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-12T15:46:41Z
dc.date.available.none.fl_str_mv 2023-07-12T15:46:41Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv González, F.A.G., Bermúdez, J.A.R. A decomposition theorem for finite-dimensional Jordan superalgebras whose simple part is Kan(2) . São Paulo J. Math. Sci. (2023). https://doi.org/10.1007/s40863-023-00367-7
dc.identifier.issn.none.fl_str_mv 1982-6907
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/35887
dc.identifier.doi.none.fl_str_mv 10.1007/s40863-023-00367-7
dc.identifier.eissn.none.fl_str_mv 2316-9028
identifier_str_mv González, F.A.G., Bermúdez, J.A.R. A decomposition theorem for finite-dimensional Jordan superalgebras whose simple part is Kan(2) . São Paulo J. Math. Sci. (2023). https://doi.org/10.1007/s40863-023-00367-7
1982-6907
10.1007/s40863-023-00367-7
2316-9028
url https://hdl.handle.net/10495/35887
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv São Paulo J. Math. Sci.
dc.relation.citationendpage.spa.fl_str_mv 16
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.ispartofjournal.spa.fl_str_mv São Paulo Journal of Mathematical Sciences
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv São Paulo, Brasil
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/ae5fdb9e-a31c-4ee2-bad3-fee9e0b6dfd5/download
https://bibliotecadigital.udea.edu.co/bitstreams/7c949a57-c627-42d7-8699-63f34d9ae2dc/download
https://bibliotecadigital.udea.edu.co/bitstreams/e6357e62-26ba-4755-8beb-103a4d8f5a9b/download
https://bibliotecadigital.udea.edu.co/bitstreams/123a8ac2-bf98-4247-94e4-b1ccde70f4c1/download
https://bibliotecadigital.udea.edu.co/bitstreams/f44d3277-aaaa-4195-b330-3a4dfde1abb4/download
bitstream.checksum.fl_str_mv c4f3b814910a9b4afb04915ff93ea86b
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
d2fd9084897610c76b30a784a786beba
c6008b7b6c1849dee6f316a29c9d11d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052399512256512
spelling Gómez González, Faber AlbertoRamírez Bermúdez, Jhon AlexanderÁlgebra U de A2023-07-12T15:46:41Z2023-07-12T15:46:41Z2023González, F.A.G., Bermúdez, J.A.R. A decomposition theorem for finite-dimensional Jordan superalgebras whose simple part is Kan(2) . São Paulo J. Math. Sci. (2023). https://doi.org/10.1007/s40863-023-00367-71982-6907https://hdl.handle.net/10495/3588710.1007/s40863-023-00367-72316-9028ABSTRACT: We consider a fnite-dimensional Jordan superalgebra A over a feld of characteristic zero F such that N is the solvable radical of A. We proved that if N 2 = 0 and A∕N is isomorphic to simple Jordan superalgebra of Grassmann Poisson bracket Kan(2), then an analogous to Wedderburn Principal Theorem (WPT) holds.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODICOL008689616application/pdfengSpringerSão Paulo, Brasilhttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Superalgebrashttp://id.loc.gov/authorities/subjects/sh94002765A decomposition theorem for fnite‐dimensional Jordan superalgebras whose simple part is Kan(2)Artículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85São Paulo J. Math. Sci.161São Paulo Journal of Mathematical Sciences2022-47470.RoR:03bp5hc83PublicationORIGINALGomezFaber_2023_DecompositionTheorem .pdfGomezFaber_2023_DecompositionTheorem .pdfArtículo de investigaciónapplication/pdf1729770https://bibliotecadigital.udea.edu.co/bitstreams/ae5fdb9e-a31c-4ee2-bad3-fee9e0b6dfd5/downloadc4f3b814910a9b4afb04915ff93ea86bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/7c949a57-c627-42d7-8699-63f34d9ae2dc/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/e6357e62-26ba-4755-8beb-103a4d8f5a9b/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGomezFaber_2023_DecompositionTheorem .pdf.txtGomezFaber_2023_DecompositionTheorem .pdf.txtExtracted texttext/plain43883https://bibliotecadigital.udea.edu.co/bitstreams/123a8ac2-bf98-4247-94e4-b1ccde70f4c1/downloadd2fd9084897610c76b30a784a786bebaMD54falseAnonymousREADTHUMBNAILGomezFaber_2023_DecompositionTheorem .pdf.jpgGomezFaber_2023_DecompositionTheorem .pdf.jpgGenerated Thumbnailimage/jpeg10519https://bibliotecadigital.udea.edu.co/bitstreams/f44d3277-aaaa-4195-b330-3a4dfde1abb4/downloadc6008b7b6c1849dee6f316a29c9d11d5MD55falseAnonymousREAD10495/35887oai:bibliotecadigital.udea.edu.co:10495/358872025-03-26 21:41:29.384http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=