Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms

RESUMEN: This study is motivated by the importance of accurately predicting insolvency before it happens. The paper aims to develop an insolvency prediction model for Colombian firms with one, two and three years of anticipation through financial ratios, keeping sample structures and taking into acc...

Full description

Autores:
Correa Mejía, Diego Andrés
Lópera Castaño, Mauricio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/15509
Acceso en línea:
http://hdl.handle.net/10495/15509
Palabra clave:
Quiebra
Bankruptcy
Análisis financiero
Financial analysis
Indicadores económicos
Financial indicators
Rights
openAccess
License
Atribución 2.5 Colombia (CC BY 2.5 CO)
id UDEA2_864227cce84426c15a4f28c0db3cb434
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/15509
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms
dc.title.alternative.spa.fl_str_mv Indicadores financieros como instrumento poderoso para predecir la insolvencia; un estudio usando el algoritmo boosting en empresas colombianas
title Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms
spellingShingle Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms
Quiebra
Bankruptcy
Análisis financiero
Financial analysis
Indicadores económicos
Financial indicators
title_short Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms
title_full Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms
title_fullStr Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms
title_full_unstemmed Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms
title_sort Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian Firms
dc.creator.fl_str_mv Correa Mejía, Diego Andrés
Lópera Castaño, Mauricio
dc.contributor.author.none.fl_str_mv Correa Mejía, Diego Andrés
Lópera Castaño, Mauricio
dc.subject.lemb.none.fl_str_mv Quiebra
Bankruptcy
topic Quiebra
Bankruptcy
Análisis financiero
Financial analysis
Indicadores económicos
Financial indicators
dc.subject.ocde.none.fl_str_mv Análisis financiero
Financial analysis
Indicadores económicos
Financial indicators
description RESUMEN: This study is motivated by the importance of accurately predicting insolvency before it happens. The paper aims to develop an insolvency prediction model for Colombian firms with one, two and three years of anticipation through financial ratios, keeping sample structures and taking into account insolvency-related regulation. This research contributes to the literature because unlike many studies, it takes legislation into account, explains the different types of financial ratios, and uses boosting algorithms without biasing the sample. Data from 11,812 Colombian companies covering the period 2012-2016 was used. The results show accuracy above 70% for insolvency prediction with one, two and three years of anticipation. RESUMEN: Esta investigación es motivada por la importancia de tener una buena predicción de la insolvencia con anticipación. El objetivo de este artículo es desarrollar un modelo predictivo para las empresas colombianas con uno, dos y tres años de anticipación usando indicadores financieros, conservando la estructura de la muestra original y teniendo en cuenta la regulación sobre insolvencia. Este artículo contribuye a la literatura ya que, a diferencia de los estudios tradicionales, se tienen en cuenta aspectos como la legislación, se explican los diferentes tipos de indicadores financieros y se utiliza el algoritmo boosting sin sesgar la muestra inicial. Para el desarrollo de este estudio se consideró una muestra de 11.812 empresas colombianas durante el periodo 2012.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-17T17:55:34Z
dc.date.available.none.fl_str_mv 2020-07-17T17:55:34Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0123-5923
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/15509
dc.identifier.doi.none.fl_str_mv 10.18046/j.estger.2020.155.3588
dc.identifier.eissn.none.fl_str_mv 2665-6744
identifier_str_mv 0123-5923
10.18046/j.estger.2020.155.3588
2665-6744
url http://hdl.handle.net/10495/15509
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Atribución 2.5 Colombia (CC BY 2.5 CO)
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Atribución 2.5 Colombia (CC BY 2.5 CO)
https://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Icesi, Facultad de Ciencias Administrativas y Económicas
dc.publisher.place.spa.fl_str_mv Cali, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/15509/2/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/15509/3/license.txt
http://bibliotecadigital.udea.edu.co/bitstream/10495/15509/1/CorreaMejiaDiego_2020_FinancialRatiosPowerful.pdf
bitstream.checksum.fl_str_mv b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
608ae26e65c4707be84633b3f9d97efa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173229637238784
spelling Correa Mejía, Diego AndrésLópera Castaño, Mauricio2020-07-17T17:55:34Z2020-07-17T17:55:34Z20200123-5923http://hdl.handle.net/10495/1550910.18046/j.estger.2020.155.35882665-6744RESUMEN: This study is motivated by the importance of accurately predicting insolvency before it happens. The paper aims to develop an insolvency prediction model for Colombian firms with one, two and three years of anticipation through financial ratios, keeping sample structures and taking into account insolvency-related regulation. This research contributes to the literature because unlike many studies, it takes legislation into account, explains the different types of financial ratios, and uses boosting algorithms without biasing the sample. Data from 11,812 Colombian companies covering the period 2012-2016 was used. The results show accuracy above 70% for insolvency prediction with one, two and three years of anticipation. RESUMEN: Esta investigación es motivada por la importancia de tener una buena predicción de la insolvencia con anticipación. El objetivo de este artículo es desarrollar un modelo predictivo para las empresas colombianas con uno, dos y tres años de anticipación usando indicadores financieros, conservando la estructura de la muestra original y teniendo en cuenta la regulación sobre insolvencia. Este artículo contribuye a la literatura ya que, a diferencia de los estudios tradicionales, se tienen en cuenta aspectos como la legislación, se explican los diferentes tipos de indicadores financieros y se utiliza el algoritmo boosting sin sesgar la muestra inicial. Para el desarrollo de este estudio se consideró una muestra de 11.812 empresas colombianas durante el periodo 2012.application/pdfengUniversidad Icesi, Facultad de Ciencias Administrativas y EconómicasCali, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/Financial Ratios as a Powerful Instrument to Predict Insolvency; a Study Using Boosting Algorithms in Colombian FirmsIndicadores financieros como instrumento poderoso para predecir la insolvencia; un estudio usando el algoritmo boosting en empresas colombianasQuiebraBankruptcyAnálisis financieroFinancial analysisIndicadores económicosFinancial indicatorsEstudios Gerenciales: Journal of Management and Economics for Iberoamerica2020CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823http://bibliotecadigital.udea.edu.co/bitstream/10495/15509/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/15509/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALCorreaMejiaDiego_2020_FinancialRatiosPowerful.pdfCorreaMejiaDiego_2020_FinancialRatiosPowerful.pdfArtículo de investigaciónapplication/pdf965827http://bibliotecadigital.udea.edu.co/bitstream/10495/15509/1/CorreaMejiaDiego_2020_FinancialRatiosPowerful.pdf608ae26e65c4707be84633b3f9d97efaMD5110495/15509oai:bibliotecadigital.udea.edu.co:10495/155092021-04-30 18:21:31.423Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=