Development of new inorganic p-type materials for perovskite solar cells

ABSTRACT: Photovoltaic (PV) energy is one the most promising alternatives to replace fossil fuels as main electricity source and decrease greenhouse effect caused by related CO2 emissions. Perovskite solar cells (PSC) is a third generation PV technology which has revolutionized this field because of...

Full description

Autores:
Tirado Jaramillo, Juan Felipe
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2019
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/14478
Acceso en línea:
http://hdl.handle.net/10495/14478
Palabra clave:
Perovskite solar cells
Solar cells
Célula fotovoltaíca
Fuels
Combustible
Electricity
Electricidad
Semiconductors
Semiconductor
Stability
Estabilidad
Inorganic hole transporting materials
Low-cost
Solution process
http://aims.fao.org/aos/agrovoc/c_36930
http://id.loc.gov/authorities/subjects/sh2019000655
http://vocabularies.unesco.org/thesaurus/concept4820
http://vocabularies.unesco.org/thesaurus/concept638
http://vocabularies.unesco.org/thesaurus/concept124
http://vocabularies.unesco.org/thesaurus/concept9546
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
id UDEA2_83ef9b93bf0d0b426ccc88416caeaca1
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/14478
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Development of new inorganic p-type materials for perovskite solar cells
title Development of new inorganic p-type materials for perovskite solar cells
spellingShingle Development of new inorganic p-type materials for perovskite solar cells
Perovskite solar cells
Solar cells
Célula fotovoltaíca
Fuels
Combustible
Electricity
Electricidad
Semiconductors
Semiconductor
Stability
Estabilidad
Inorganic hole transporting materials
Low-cost
Solution process
http://aims.fao.org/aos/agrovoc/c_36930
http://id.loc.gov/authorities/subjects/sh2019000655
http://vocabularies.unesco.org/thesaurus/concept4820
http://vocabularies.unesco.org/thesaurus/concept638
http://vocabularies.unesco.org/thesaurus/concept124
http://vocabularies.unesco.org/thesaurus/concept9546
title_short Development of new inorganic p-type materials for perovskite solar cells
title_full Development of new inorganic p-type materials for perovskite solar cells
title_fullStr Development of new inorganic p-type materials for perovskite solar cells
title_full_unstemmed Development of new inorganic p-type materials for perovskite solar cells
title_sort Development of new inorganic p-type materials for perovskite solar cells
dc.creator.fl_str_mv Tirado Jaramillo, Juan Felipe
dc.contributor.advisor.none.fl_str_mv Jaramillo Isaza, Franklin
dc.contributor.author.none.fl_str_mv Tirado Jaramillo, Juan Felipe
dc.subject.lcsh.none.fl_str_mv Perovskite solar cells
topic Perovskite solar cells
Solar cells
Célula fotovoltaíca
Fuels
Combustible
Electricity
Electricidad
Semiconductors
Semiconductor
Stability
Estabilidad
Inorganic hole transporting materials
Low-cost
Solution process
http://aims.fao.org/aos/agrovoc/c_36930
http://id.loc.gov/authorities/subjects/sh2019000655
http://vocabularies.unesco.org/thesaurus/concept4820
http://vocabularies.unesco.org/thesaurus/concept638
http://vocabularies.unesco.org/thesaurus/concept124
http://vocabularies.unesco.org/thesaurus/concept9546
dc.subject.unesco.none.fl_str_mv Solar cells
Célula fotovoltaíca
Fuels
Combustible
Electricity
Electricidad
Semiconductors
Semiconductor
dc.subject.agrovoc.none.fl_str_mv Stability
Estabilidad
dc.subject.proposal.spa.fl_str_mv Inorganic hole transporting materials
Low-cost
Solution process
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_36930
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2019000655
dc.subject.unescouri.none.fl_str_mv http://vocabularies.unesco.org/thesaurus/concept4820
http://vocabularies.unesco.org/thesaurus/concept638
http://vocabularies.unesco.org/thesaurus/concept124
http://vocabularies.unesco.org/thesaurus/concept9546
description ABSTRACT: Photovoltaic (PV) energy is one the most promising alternatives to replace fossil fuels as main electricity source and decrease greenhouse effect caused by related CO2 emissions. Perovskite solar cells (PSC) is a third generation PV technology which has revolutionized this field because of its extremely fast increase in power conversion efficiency (PCE). Remarkably, PSC PCE has achieved values >24% being comparable with polycrystalline silicon and thin film PV (CdTe, CIGS) so that it has become in a real alternative to traditional silicon PV. In order to reach a commercialization quality level, PSC need to improve its long-term stability, PCE of large devices and cost-effectiveness. It has been widely recognized that charge selective layers are crucial components of PSC structure for managing of photogenerated charges. Specifically, hole-transporting materials (HTM) have a strong influence on device performance, stability and cost. However, they represent one of the major bottleneck for PSC commercialization owing to unstable and expensive organic molecules materials often employed. In this framework, inorganic p-type semiconductors are a promising option to overcome issues related to organic HTM because of their intrinsic good properties as hole selective contacts and ambient stability. Nevertheless, relative few inorganic materials have been explored for this function so that they have not reached organic counterparts’ performance. Thus, it is mandatory to explore and optimize new inorganic alternatives for HTM in PSC. Accordingly, in this thesis two inorganic p-type semiconductors, namely, copper sulfide and nickel oxide, have been applied in two different PSC architectures by three distinct approaches. First, copper sulfide thin films (CuxS) were fabricated by spray pyrolysis technique and applied as semi-transparent electrode in planar p-i-n PSC. Morphological and optoelectronic properties of CuxS were correlated with device performance. In the second approach, copper sulfide was synthesized in the form of nanoparticles (CuS NPs) and colloidal dispersions in non-polar solvents were obtained. Subsequently, the CuS NPs were applied by spin-coating technique in a mesoscopic n-i-p architecture, acting as sole HTM and exhibiting efficiencies over 13%. Third, hydrophobic nickel oxide (ho-NiOx) nanocrystals were synthesized and corresponding colloidal dispersions were obtained. Then, n-i-p planar PSC were fabricated employing ho-NiOx as sole HTM which was deposited by solution-process spin-coating. Remarkably, PCE as high as 12.7% and impressive high-humidity air stability was observed. Namely, PCE retention over 90% was exhibited by ho-NiOx-based PSC for more than 1000 h. The optoelectronic properties, energy band alignment and interface phenomena are studied and discussed in detailed for all the obtained semiconductors and devices.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-05-20T17:17:33Z
dc.date.available.none.fl_str_mv 2020-05-20T17:17:33Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/14478
url http://hdl.handle.net/10495/14478
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 112
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/14478/1/TiradoJuan_2019_DevelopedInorganicMaterials.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/14478/2/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/14478/3/license.txt
bitstream.checksum.fl_str_mv 1bd1715406e18d547b210e0ebc34ea6f
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1805390210698051584
spelling Jaramillo Isaza, FranklinTirado Jaramillo, Juan Felipe2020-05-20T17:17:33Z2020-05-20T17:17:33Z2019http://hdl.handle.net/10495/14478ABSTRACT: Photovoltaic (PV) energy is one the most promising alternatives to replace fossil fuels as main electricity source and decrease greenhouse effect caused by related CO2 emissions. Perovskite solar cells (PSC) is a third generation PV technology which has revolutionized this field because of its extremely fast increase in power conversion efficiency (PCE). Remarkably, PSC PCE has achieved values >24% being comparable with polycrystalline silicon and thin film PV (CdTe, CIGS) so that it has become in a real alternative to traditional silicon PV. In order to reach a commercialization quality level, PSC need to improve its long-term stability, PCE of large devices and cost-effectiveness. It has been widely recognized that charge selective layers are crucial components of PSC structure for managing of photogenerated charges. Specifically, hole-transporting materials (HTM) have a strong influence on device performance, stability and cost. However, they represent one of the major bottleneck for PSC commercialization owing to unstable and expensive organic molecules materials often employed. In this framework, inorganic p-type semiconductors are a promising option to overcome issues related to organic HTM because of their intrinsic good properties as hole selective contacts and ambient stability. Nevertheless, relative few inorganic materials have been explored for this function so that they have not reached organic counterparts’ performance. Thus, it is mandatory to explore and optimize new inorganic alternatives for HTM in PSC. Accordingly, in this thesis two inorganic p-type semiconductors, namely, copper sulfide and nickel oxide, have been applied in two different PSC architectures by three distinct approaches. First, copper sulfide thin films (CuxS) were fabricated by spray pyrolysis technique and applied as semi-transparent electrode in planar p-i-n PSC. Morphological and optoelectronic properties of CuxS were correlated with device performance. In the second approach, copper sulfide was synthesized in the form of nanoparticles (CuS NPs) and colloidal dispersions in non-polar solvents were obtained. Subsequently, the CuS NPs were applied by spin-coating technique in a mesoscopic n-i-p architecture, acting as sole HTM and exhibiting efficiencies over 13%. Third, hydrophobic nickel oxide (ho-NiOx) nanocrystals were synthesized and corresponding colloidal dispersions were obtained. Then, n-i-p planar PSC were fabricated employing ho-NiOx as sole HTM which was deposited by solution-process spin-coating. Remarkably, PCE as high as 12.7% and impressive high-humidity air stability was observed. Namely, PCE retention over 90% was exhibited by ho-NiOx-based PSC for more than 1000 h. The optoelectronic properties, energy band alignment and interface phenomena are studied and discussed in detailed for all the obtained semiconductors and devices.112application/pdfspainfo:eu-repo/semantics/draftinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/version/c_b1a7d7d4d402bcceAtribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Perovskite solar cellsSolar cellsCélula fotovoltaícaFuelsCombustibleElectricityElectricidadSemiconductorsSemiconductorStabilityEstabilidadInorganic hole transporting materialsLow-costSolution processhttp://aims.fao.org/aos/agrovoc/c_36930http://id.loc.gov/authorities/subjects/sh2019000655http://vocabularies.unesco.org/thesaurus/concept4820http://vocabularies.unesco.org/thesaurus/concept638http://vocabularies.unesco.org/thesaurus/concept124http://vocabularies.unesco.org/thesaurus/concept9546Development of new inorganic p-type materials for perovskite solar cellsMedellín, ColombiaDoctor en Ingeniería de MaterialesDoctoradoFacultad de Ingeniería. Doctorado en Ingeniería de MaterialesUniversidad de AntioquiaORIGINALTiradoJuan_2019_DevelopedInorganicMaterials.pdfTiradoJuan_2019_DevelopedInorganicMaterials.pdfTesis doctoralapplication/pdf4496520http://bibliotecadigital.udea.edu.co/bitstream/10495/14478/1/TiradoJuan_2019_DevelopedInorganicMaterials.pdf1bd1715406e18d547b210e0ebc34ea6fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823http://bibliotecadigital.udea.edu.co/bitstream/10495/14478/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/14478/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/14478oai:bibliotecadigital.udea.edu.co:10495/144782021-05-21 11:44:14.658Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=