Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition

ABSTRACT: This work reports the synthesis of multiwall carbon nanotubes (MWCNTs) by the catalytic decomposition of ethanol using the perovskite-type oxide LaNiO3 as catalyst precursor. The carbon nanotubes were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy...

Full description

Autores:
Gallego Marín, Jaime Andrés
Sierra Gallego, Germán Alberto
Daza Velásquez, Carlos Enrique
Molina Gallego, Rafael Alberto
Barrault, Joël
Batiot Dupeyat, Catherine
Mondragón Pérez, Fanor
Tipo de recurso:
Article of investigation
Fecha de publicación:
2013
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/22214
Acceso en línea:
http://hdl.handle.net/10495/22214
https://revistas.unal.edu.co/index.php/dyna/article/view/28717
Palabra clave:
Nanotubes Carbon
Nanotubos de Carbono
Nickel
Níquel
Hydrogen
Hidrógeno
Perovskites
Ethanol decomposition
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_82b7f58e0839e6f2b5716ef493371dd8
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/22214
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition
dc.title.alternative.spa.fl_str_mv Producción de nanotubos e hidrógeno mediante la descomposición catalítica de etanol
title Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition
spellingShingle Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition
Nanotubes Carbon
Nanotubos de Carbono
Nickel
Níquel
Hydrogen
Hidrógeno
Perovskites
Ethanol decomposition
title_short Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition
title_full Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition
title_fullStr Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition
title_full_unstemmed Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition
title_sort Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition
dc.creator.fl_str_mv Gallego Marín, Jaime Andrés
Sierra Gallego, Germán Alberto
Daza Velásquez, Carlos Enrique
Molina Gallego, Rafael Alberto
Barrault, Joël
Batiot Dupeyat, Catherine
Mondragón Pérez, Fanor
dc.contributor.author.none.fl_str_mv Gallego Marín, Jaime Andrés
Sierra Gallego, Germán Alberto
Daza Velásquez, Carlos Enrique
Molina Gallego, Rafael Alberto
Barrault, Joël
Batiot Dupeyat, Catherine
Mondragón Pérez, Fanor
dc.subject.decs.none.fl_str_mv Nanotubes Carbon
Nanotubos de Carbono
Nickel
Níquel
Hydrogen
Hidrógeno
topic Nanotubes Carbon
Nanotubos de Carbono
Nickel
Níquel
Hydrogen
Hidrógeno
Perovskites
Ethanol decomposition
dc.subject.proposal.spa.fl_str_mv Perovskites
Ethanol decomposition
description ABSTRACT: This work reports the synthesis of multiwall carbon nanotubes (MWCNTs) by the catalytic decomposition of ethanol using the perovskite-type oxide LaNiO3 as catalyst precursor. The carbon nanotubes were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). TEM micrographs show that the carbon nanotubes were multi-walled with inner diameters ranging frABSTRACT: This work reports the synthesis of multiwall carbon nanotubes (MWCNTs) by the catalytic decomposition of ethanol using the perovskite-type oxide LaNiO3 as catalyst precursor. The carbon nanotubes were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). TEM micrographs show that the carbon nanotubes were multi-walled with inner diameters ranging from 3 nm to 12 nm and outer diameters up to 42 nm. The yield of CNT and H2 were 3.5 gCNT·(gcat·h)-1 and 39 LH2·(g·h)-1 respectively at 700 °C. TGA data show that nanotube carbon purity was about 95 % by weight and the oxidation temperature was around 620 °C. om 3 nm to 12 nm and outer diameters up to 42 nm. The yield of CNT and H2 were 3.5 gCNT·(gcat·h)-1 and 39 LH2·(g·h)-1 respectively at 700 °C. TGA data show that nanotube carbon purity was about 95 % by weight and the oxidation temperature was around 620 °C.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2021-09-06T10:35:30Z
dc.date.available.none.fl_str_mv 2021-09-06T10:35:30Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Gallego, J., Sierra, G., Daza, C., Molina, R., Barrault, J., Batiot, C., & Mondragón, F. (2013). Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition. DYNA, 80(178), 78-85. Recuperado a partir de https://revistas.unal.edu.co/index.php/dyna/article/view/28717c
dc.identifier.issn.none.fl_str_mv 0012-7353
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/22214
dc.identifier.eissn.none.fl_str_mv 2346-2183
dc.identifier.url.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/28717
identifier_str_mv Gallego, J., Sierra, G., Daza, C., Molina, R., Barrault, J., Batiot, C., & Mondragón, F. (2013). Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition. DYNA, 80(178), 78-85. Recuperado a partir de https://revistas.unal.edu.co/index.php/dyna/article/view/28717c
0012-7353
2346-2183
url http://hdl.handle.net/10495/22214
https://revistas.unal.edu.co/index.php/dyna/article/view/28717
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Dyna
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.spa.fl_str_mv 8
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia, Facultad de Minas, Centro de Publicaciones
dc.publisher.group.spa.fl_str_mv Química de Recursos Energéticos y Medio Ambiente
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/22214/1/GallegoJaime_2013_CarbonNanotubesHydrogen.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/22214/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/22214/3/license.txt
bitstream.checksum.fl_str_mv 3c89436c4ceeb765585626c32fb4bb6b
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1805390347537219584
spelling Gallego Marín, Jaime AndrésSierra Gallego, Germán AlbertoDaza Velásquez, Carlos EnriqueMolina Gallego, Rafael AlbertoBarrault, JoëlBatiot Dupeyat, CatherineMondragón Pérez, Fanor2021-09-06T10:35:30Z2021-09-06T10:35:30Z2013Gallego, J., Sierra, G., Daza, C., Molina, R., Barrault, J., Batiot, C., & Mondragón, F. (2013). Production of carbon nanotubes and hydrogen by catalytic ethanol decomposition. DYNA, 80(178), 78-85. Recuperado a partir de https://revistas.unal.edu.co/index.php/dyna/article/view/28717c0012-7353http://hdl.handle.net/10495/222142346-2183https://revistas.unal.edu.co/index.php/dyna/article/view/28717ABSTRACT: This work reports the synthesis of multiwall carbon nanotubes (MWCNTs) by the catalytic decomposition of ethanol using the perovskite-type oxide LaNiO3 as catalyst precursor. The carbon nanotubes were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). TEM micrographs show that the carbon nanotubes were multi-walled with inner diameters ranging frABSTRACT: This work reports the synthesis of multiwall carbon nanotubes (MWCNTs) by the catalytic decomposition of ethanol using the perovskite-type oxide LaNiO3 as catalyst precursor. The carbon nanotubes were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM) and thermogravimetric analysis (TGA). TEM micrographs show that the carbon nanotubes were multi-walled with inner diameters ranging from 3 nm to 12 nm and outer diameters up to 42 nm. The yield of CNT and H2 were 3.5 gCNT·(gcat·h)-1 and 39 LH2·(g·h)-1 respectively at 700 °C. TGA data show that nanotube carbon purity was about 95 % by weight and the oxidation temperature was around 620 °C. om 3 nm to 12 nm and outer diameters up to 42 nm. The yield of CNT and H2 were 3.5 gCNT·(gcat·h)-1 and 39 LH2·(g·h)-1 respectively at 700 °C. TGA data show that nanotube carbon purity was about 95 % by weight and the oxidation temperature was around 620 °C.RESUMEN: En este trabajo se sintetizaron nanotubos de carbono multicapa (MWCNTs) por medio de la reacción de descomposición de etanol usando como precursor del catalizador a la perovskita LaNiO3. Los nanotubos de carbono de pared múltiple (MWCNTs) fueron caracterizados por microscopía electrónica de transmisión (TEM) y de barrido (SEM) y análisis termogravimétrico (TGA). Mediante SEM se observó que los MWCNTs poseen diámetros internos entre 3 nm y 12 nm con diámetros externos de hasta 42 nm, igualmente se observaron algunas partículas metálicas encapsuladas dentro de los nanotubos. La producción de CNT e H2 fue de 3,5 gCNT·(gcat·h)-1 y 39 LH2·(g·h)-1 respectivamente a 700 °C. Por TGA se encontró que la pureza de los nanotubos es alrededor del 95 % en peso y su temperatura de oxidación alrededor de 620 °C.COL00153938application/pdfengUniversidad Nacional de Colombia, Facultad de Minas, Centro de PublicacionesQuímica de Recursos Energéticos y Medio AmbienteMedellín, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Production of carbon nanotubes and hydrogen by catalytic ethanol decompositionProducción de nanotubos e hidrógeno mediante la descomposición catalítica de etanolNanotubes CarbonNanotubos de CarbonoNickelNíquelHydrogenHidrógenoPerovskitesEthanol decompositionDynaDyna788580178ORIGINALGallegoJaime_2013_CarbonNanotubesHydrogen.pdfGallegoJaime_2013_CarbonNanotubesHydrogen.pdfArtículo de investigaciónapplication/pdf1604651https://bibliotecadigital.udea.edu.co/bitstream/10495/22214/1/GallegoJaime_2013_CarbonNanotubesHydrogen.pdf3c89436c4ceeb765585626c32fb4bb6bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/22214/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/22214/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/22214oai:bibliotecadigital.udea.edu.co:10495/222142023-04-11 16:04:32.913Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=