The Faddeev-Popov term reviewed

ABSTRACT: Some textbooks and reports claim that the Jacobian which arises in the discussion of the Faddeev-Popov method to quantize non-Abelian gauge theories and which is given by the derivative of the gauge fixing conditions over the gauge group parameters, is gauge invariant. Other references how...

Full description

Autores:
Jaramillo Arango, Daniel Esteban
Muñoz, J. H.
Zepeda, Arnulfo
Tipo de recurso:
Article of investigation
Fecha de publicación:
1997
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30722
Acceso en línea:
https://hdl.handle.net/10495/30722
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771
Palabra clave:
Integración funcional
Integration, functional
Gauge invariance
Gauge Traformation
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_7ec2ae08c6ef0c426db89addd7f1cc2b
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30722
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv The Faddeev-Popov term reviewed
title The Faddeev-Popov term reviewed
spellingShingle The Faddeev-Popov term reviewed
Integración funcional
Integration, functional
Gauge invariance
Gauge Traformation
title_short The Faddeev-Popov term reviewed
title_full The Faddeev-Popov term reviewed
title_fullStr The Faddeev-Popov term reviewed
title_full_unstemmed The Faddeev-Popov term reviewed
title_sort The Faddeev-Popov term reviewed
dc.creator.fl_str_mv Jaramillo Arango, Daniel Esteban
Muñoz, J. H.
Zepeda, Arnulfo
dc.contributor.author.none.fl_str_mv Jaramillo Arango, Daniel Esteban
Muñoz, J. H.
Zepeda, Arnulfo
dc.subject.lemb.none.fl_str_mv Integración funcional
Integration, functional
topic Integración funcional
Integration, functional
Gauge invariance
Gauge Traformation
dc.subject.proposal.spa.fl_str_mv Gauge invariance
Gauge Traformation
description ABSTRACT: Some textbooks and reports claim that the Jacobian which arises in the discussion of the Faddeev-Popov method to quantize non-Abelian gauge theories and which is given by the derivative of the gauge fixing conditions over the gauge group parameters, is gauge invariant. Other references however prove the opposite. In this brief report we present a discussion about this matter.
publishDate 1997
dc.date.issued.none.fl_str_mv 1997
dc.date.accessioned.none.fl_str_mv 2022-09-20T20:33:27Z
dc.date.available.none.fl_str_mv 2022-09-20T20:33:27Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Jaramillo, D.E., J.H. Muñoz, ., and A. Zepeda. 1998. The Faddeev-Popov Term Reviewed. Revista Mexicana De Física 44 (3):316-18. https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771.
dc.identifier.issn.none.fl_str_mv 0035-001X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30722
dc.identifier.eissn.none.fl_str_mv 2683-2224
dc.identifier.url.spa.fl_str_mv https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771
identifier_str_mv Jaramillo, D.E., J.H. Muñoz, ., and A. Zepeda. 1998. The Faddeev-Popov Term Reviewed. Revista Mexicana De Física 44 (3):316-18. https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771.
0035-001X
2683-2224
url https://hdl.handle.net/10495/30722
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Mex. Fís.
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.spa.fl_str_mv 3
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Sociedad Mexicana de Física A.C.
dc.publisher.group.spa.fl_str_mv Grupo de Fenomenología de Interacciones Fundamentales
dc.publisher.place.spa.fl_str_mv Ciudad de México, México
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/30722/1/JaramilloD_1997_TheFaddeev-PopovTerm.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30722/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30722/3/license.txt
bitstream.checksum.fl_str_mv bef6e8710cda9b8bb0e545884d03148e
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173132525469696
spelling Jaramillo Arango, Daniel EstebanMuñoz, J. H.Zepeda, Arnulfo2022-09-20T20:33:27Z2022-09-20T20:33:27Z1997Jaramillo, D.E., J.H. Muñoz, ., and A. Zepeda. 1998. The Faddeev-Popov Term Reviewed. Revista Mexicana De Física 44 (3):316-18. https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771.0035-001Xhttps://hdl.handle.net/10495/307222683-2224https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771ABSTRACT: Some textbooks and reports claim that the Jacobian which arises in the discussion of the Faddeev-Popov method to quantize non-Abelian gauge theories and which is given by the derivative of the gauge fixing conditions over the gauge group parameters, is gauge invariant. Other references however prove the opposite. In this brief report we present a discussion about this matter.COL00084233application/pdfengSociedad Mexicana de Física A.C.Grupo de Fenomenología de Interacciones FundamentalesCiudad de México, Méxicoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/The Faddeev-Popov term reviewedIntegración funcionalIntegration, functionalGauge invarianceGauge TraformationRev. Mex. Fís.Revista Mexicana de Física316318443ORIGINALJaramilloD_1997_TheFaddeev-PopovTerm.pdfJaramilloD_1997_TheFaddeev-PopovTerm.pdfArtículo de investigaciónapplication/pdf958501https://bibliotecadigital.udea.edu.co/bitstream/10495/30722/1/JaramilloD_1997_TheFaddeev-PopovTerm.pdfbef6e8710cda9b8bb0e545884d03148eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/30722/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30722/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/30722oai:bibliotecadigital.udea.edu.co:10495/307222022-09-20 15:33:28.245Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=