The Faddeev-Popov term reviewed

ABSTRACT: Some textbooks and reports claim that the Jacobian which arises in the discussion of the Faddeev-Popov method to quantize non-Abelian gauge theories and which is given by the derivative of the gauge fixing conditions over the gauge group parameters, is gauge invariant. Other references how...

Full description

Autores:
Jaramillo Arango, Daniel Esteban
Muñoz, J. H.
Zepeda, Arnulfo
Tipo de recurso:
Article of investigation
Fecha de publicación:
1997
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30722
Acceso en línea:
https://hdl.handle.net/10495/30722
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771
Palabra clave:
Integración funcional
Integration, functional
Gauge invariance
Gauge Traformation
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Description
Summary:ABSTRACT: Some textbooks and reports claim that the Jacobian which arises in the discussion of the Faddeev-Popov method to quantize non-Abelian gauge theories and which is given by the derivative of the gauge fixing conditions over the gauge group parameters, is gauge invariant. Other references however prove the opposite. In this brief report we present a discussion about this matter.