The Faddeev-Popov term reviewed
ABSTRACT: Some textbooks and reports claim that the Jacobian which arises in the discussion of the Faddeev-Popov method to quantize non-Abelian gauge theories and which is given by the derivative of the gauge fixing conditions over the gauge group parameters, is gauge invariant. Other references how...
- Autores:
-
Jaramillo Arango, Daniel Esteban
Muñoz, J. H.
Zepeda, Arnulfo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 1997
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30722
- Acceso en línea:
- https://hdl.handle.net/10495/30722
https://rmf.smf.mx/ojs/index.php/rmf/article/view/2771
- Palabra clave:
- Integración funcional
Integration, functional
Gauge invariance
Gauge Traformation
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Summary: | ABSTRACT: Some textbooks and reports claim that the Jacobian which arises in the discussion of the Faddeev-Popov method to quantize non-Abelian gauge theories and which is given by the derivative of the gauge fixing conditions over the gauge group parameters, is gauge invariant. Other references however prove the opposite. In this brief report we present a discussion about this matter. |
---|