Entanglement, coherence and correlation in atomic and molecular systems

ABSTRACT: In the present work, we have computed the entanglement between the electronic and nuclear motions in two molecular model systems: the one-dimensional hydrogen molecular ion (H2+) and the Shin-Metiu model, considering the molecules as a bipartite systems: electron and nuclear motion. For th...

Full description

Autores:
Pulgarín Mosquera, Juan Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/26678
Acceso en línea:
http://hdl.handle.net/10495/26678
Palabra clave:
Quantum systems
Quantum entanglement
Molecules - Models
Born-Oppenheimer approximation
Coherence (Nuclear physics)
Born-Huang approximation
http://id.loc.gov/authorities/subjects/sh2013002642
http://id.loc.gov/authorities/subjects/sh2011004527
http://id.loc.gov/authorities/subjects/sh85027761
http://id.loc.gov/authorities/subjects/sh85086598
http://id.loc.gov/authorities/subjects/sh94002962
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
id UDEA2_79475fbfa53bbd7f9a707af365c75ab0
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/26678
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Entanglement, coherence and correlation in atomic and molecular systems
title Entanglement, coherence and correlation in atomic and molecular systems
spellingShingle Entanglement, coherence and correlation in atomic and molecular systems
Quantum systems
Quantum entanglement
Molecules - Models
Born-Oppenheimer approximation
Coherence (Nuclear physics)
Born-Huang approximation
http://id.loc.gov/authorities/subjects/sh2013002642
http://id.loc.gov/authorities/subjects/sh2011004527
http://id.loc.gov/authorities/subjects/sh85027761
http://id.loc.gov/authorities/subjects/sh85086598
http://id.loc.gov/authorities/subjects/sh94002962
title_short Entanglement, coherence and correlation in atomic and molecular systems
title_full Entanglement, coherence and correlation in atomic and molecular systems
title_fullStr Entanglement, coherence and correlation in atomic and molecular systems
title_full_unstemmed Entanglement, coherence and correlation in atomic and molecular systems
title_sort Entanglement, coherence and correlation in atomic and molecular systems
dc.creator.fl_str_mv Pulgarín Mosquera, Juan Felipe
dc.contributor.advisor.none.fl_str_mv Sanz Vicario, José Luis
dc.contributor.author.none.fl_str_mv Pulgarín Mosquera, Juan Felipe
dc.subject.lcsh.none.fl_str_mv Quantum systems
Quantum entanglement
Molecules - Models
Born-Oppenheimer approximation
Coherence (Nuclear physics)
topic Quantum systems
Quantum entanglement
Molecules - Models
Born-Oppenheimer approximation
Coherence (Nuclear physics)
Born-Huang approximation
http://id.loc.gov/authorities/subjects/sh2013002642
http://id.loc.gov/authorities/subjects/sh2011004527
http://id.loc.gov/authorities/subjects/sh85027761
http://id.loc.gov/authorities/subjects/sh85086598
http://id.loc.gov/authorities/subjects/sh94002962
dc.subject.proposal.spa.fl_str_mv Born-Huang approximation
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2013002642
http://id.loc.gov/authorities/subjects/sh2011004527
http://id.loc.gov/authorities/subjects/sh85027761
http://id.loc.gov/authorities/subjects/sh85086598
http://id.loc.gov/authorities/subjects/sh94002962
description ABSTRACT: In the present work, we have computed the entanglement between the electronic and nuclear motions in two molecular model systems: the one-dimensional hydrogen molecular ion (H2+) and the Shin-Metiu model, considering the molecules as a bipartite systems: electron and nuclear motion. For that purpose, we have computed the Born-Oppenheimer and non-Born-Oppenheimer (Born-Huang) wave function in terms of the Fourier Grid Hamiltonian basis that expands both the electronic and nuclear wave functions. Also, according to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, there is a much shorter but equivalent expansion in terms of the Schmidt bases for the electronic and nuclear sub-spaces. In these models of distinguishable coupled particles we have shown that the entanglements contents do not increase monotonically with the excitation energy. In the hydrogen molecular ion and in the ShinMetiu model, the entanglements contents for each Born-Oppenheimer electro-nuclear state is quantified through the von-Neumann and linear entropies and we have shown that entanglement serves as a witness of distinguishability of nuclear states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2022-03-16T19:23:27Z
dc.date.available.none.fl_str_mv 2022-03-16T19:23:27Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/26678
url http://hdl.handle.net/10495/26678
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.spa.fl_str_mv 87
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.group.spa.fl_str_mv Grupo de Física Atómica y Molecular
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/26678/1/PulgarinJuan_2020_EntanglementMolecularSystems.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/26678/2/license.txt
bitstream.checksum.fl_str_mv bb310047cf725d5bcb8c1deb79517fc1
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173131458019328
spelling Sanz Vicario, José LuisPulgarín Mosquera, Juan Felipe2022-03-16T19:23:27Z2022-03-16T19:23:27Z2020http://hdl.handle.net/10495/26678ABSTRACT: In the present work, we have computed the entanglement between the electronic and nuclear motions in two molecular model systems: the one-dimensional hydrogen molecular ion (H2+) and the Shin-Metiu model, considering the molecules as a bipartite systems: electron and nuclear motion. For that purpose, we have computed the Born-Oppenheimer and non-Born-Oppenheimer (Born-Huang) wave function in terms of the Fourier Grid Hamiltonian basis that expands both the electronic and nuclear wave functions. Also, according to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, there is a much shorter but equivalent expansion in terms of the Schmidt bases for the electronic and nuclear sub-spaces. In these models of distinguishable coupled particles we have shown that the entanglements contents do not increase monotonically with the excitation energy. In the hydrogen molecular ion and in the ShinMetiu model, the entanglements contents for each Born-Oppenheimer electro-nuclear state is quantified through the von-Neumann and linear entropies and we have shown that entanglement serves as a witness of distinguishability of nuclear states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.87application/pdfenginfo:eu-repo/semantics/draftinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)http://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Quantum systemsQuantum entanglementMolecules - ModelsBorn-Oppenheimer approximationCoherence (Nuclear physics)Born-Huang approximationhttp://id.loc.gov/authorities/subjects/sh2013002642http://id.loc.gov/authorities/subjects/sh2011004527http://id.loc.gov/authorities/subjects/sh85027761http://id.loc.gov/authorities/subjects/sh85086598http://id.loc.gov/authorities/subjects/sh94002962Entanglement, coherence and correlation in atomic and molecular systemsGrupo de Física Atómica y MolecularMedellín, ColombiaFísicoPregradoFacultad de Ciencias Exactas y Naturales. FísicaUniversidad de AntioquiaORIGINALPulgarinJuan_2020_EntanglementMolecularSystems.pdfPulgarinJuan_2020_EntanglementMolecularSystems.pdfTrabajo de grado de pregradoapplication/pdf17849685http://bibliotecadigital.udea.edu.co/bitstream/10495/26678/1/PulgarinJuan_2020_EntanglementMolecularSystems.pdfbb310047cf725d5bcb8c1deb79517fc1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/26678/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210495/26678oai:bibliotecadigital.udea.edu.co:10495/266782022-04-06 11:17:58.348Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=