(1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries

ABSTRACT: The demand for high-capacity batteries is increasing rapidly with the upcoming energetic needs of an ever increasing population, especially in the transportation sector. Lithium-ion battery (LIB) has emerged as an attractive technology, however the main restriction is his low energy densit...

Full description

Autores:
Mosquera Mosquera, Nerly Liliana
Calderón Gutiérrez, Jorge Andrés
López Chalarca, Liliana Trinidad
Tipo de recurso:
http://purl.org/coar/resource_type/c_5794
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30469
Acceso en línea:
https://hdl.handle.net/10495/30469
Palabra clave:
Lithium ion batteries
Sodium ion batteries
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh2019000815
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia
id UDEA2_77a57da8fa97196bd47601f8f7536bdd
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30469
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv (1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries
title (1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries
spellingShingle (1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries
Lithium ion batteries
Sodium ion batteries
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh2019000815
title_short (1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries
title_full (1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries
title_fullStr (1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries
title_full_unstemmed (1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries
title_sort (1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion Batteries
dc.creator.fl_str_mv Mosquera Mosquera, Nerly Liliana
Calderón Gutiérrez, Jorge Andrés
López Chalarca, Liliana Trinidad
dc.contributor.author.none.fl_str_mv Mosquera Mosquera, Nerly Liliana
Calderón Gutiérrez, Jorge Andrés
López Chalarca, Liliana Trinidad
dc.contributor.conferencename.spa.fl_str_mv ECS Meeting (241 : 31 de mayo de 2022 : Centro de Convenciones de Vancouver, Salón 216, Vancouver, Canadá)
dc.subject.lcsh.none.fl_str_mv Lithium ion batteries
Sodium ion batteries
topic Lithium ion batteries
Sodium ion batteries
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh2019000815
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh2019000815
description ABSTRACT: The demand for high-capacity batteries is increasing rapidly with the upcoming energetic needs of an ever increasing population, especially in the transportation sector. Lithium-ion battery (LIB) has emerged as an attractive technology, however the main restriction is his low energy density1. To make a post-transition possible the sodium-ion battery (SIB) are among the most promising alternatives due sodium is abundant, there are enormous availability and It's low cost2. Besides, the electrochemical principles governing LIB and SIB batteries are quite similar3. Nevertheless, for both emerging alternatives it is necessary to find more suitable electrode materials. Therefore, nowadays, different electrode materials have been explored to increase the capacity of those batteries. Specially, the layered-spinel structure has been used to improve the initial specific capacity and stability electrode materials. The Na-layered structure cathode facilitates Li+-ion diffusion in the structure4. Besides the incorporation of Ti4+ in the LiMn2O4 spinel phase is performed with the purpose of improving its stability by averting the Jahn-Teller effect of the Mn3+ and decreasing Mn2+ dissolution towards the electrolyte during cycling since Ti-O provides a higher binding energy (662 kJ/mol) than for Mn-O (402 kJ/mol)1. The aim of this investigation is to estimate the optimal stoichiometry in the (1-x)Li1-yNayM1-zTizO2x LiM2-zTizO4 layered-spinel by varying the concentration of Na+ and to assess the effects of the Na+ addition in the cycling stability of the active material. A facile sol-gel method is presented to develop new composite materials for LIB and SIB. Analysis of XRD patterns confirmed the existence of a spinel layered composite where the peaks can be indexed to the cubic spinel structure (Fd3̅m) and layered structure (c2/c) for the (020) superlattice peak at 20.5°5. For LIB cycling was performed typically between 4.8 and 2.0V vs. Li|Li+ at a constant current of 29.0 mAg-1, equivalent to 0.1 C-rate. The stoichiometry 0,5Li0.9Na0.1Mn0.4Ni0.5Ti0.1O2-0,5LiMn1.4Ni0.5Ti0.1O4 showed an initial specific capacity, ca. 141 mAhg-1 but later it presented increasing of the specific capacity, ca. 180 mAh g-1 at 15st cycling exhibiting 98% of its charge capacity after 30st cycles. Moreover, for SIB cycling was performed typically between 4.5 and 2.0V vs. Na|Na+ at a constant current of 12.0 mAg-1, equivalent to 0.1 C-rate. In this case, the stoichiometry 0,5Li0Na1.0Mn0.4Ni0.5Ti0.1O2-0,5LiMn1.4Ni0.5Ti0.1O4 showed an initial specific capacity, ca. 118 mAh g-1. Thus, by possessing interesting properties electrochemical we believe that these materials could be a potential electrode for the development of high-power rechargeable Li-ion batteries and Na-ion batteries.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-07T19:42:03Z
dc.date.available.none.fl_str_mv 2022-09-07T19:42:03Z
dc.date.issued.none.fl_str_mv 2022-05-31
dc.type.spa.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_5794
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/EC
dc.type.local.spa.fl_str_mv Documento de conferencia
format http://purl.org/coar/resource_type/c_5794
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30469
url https://hdl.handle.net/10495/30469
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.spa.fl_str_mv 1
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.group.spa.fl_str_mv Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)
dc.publisher.place.spa.fl_str_mv Vancouver, Canadá
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/30469/3/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30469/1/MosqueraNerly_2022_Layered_Spinel_nanoparticles_Resumen.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30469/2/MosqueraNerly_2022_Layered_Spinel_nanoparticles_Presentacion.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/30469/4/license.txt
bitstream.checksum.fl_str_mv e2060682c9c70d4d30c83c51448f4eed
80e6c0c071a4db2be259ee36c740c0dd
0ca34741329ac2293ee6e7ddd6e5f3f3
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173250714664960
spelling Mosquera Mosquera, Nerly LilianaCalderón Gutiérrez, Jorge AndrésLópez Chalarca, Liliana TrinidadECS Meeting (241 : 31 de mayo de 2022 : Centro de Convenciones de Vancouver, Salón 216, Vancouver, Canadá)2022-09-07T19:42:03Z2022-09-07T19:42:03Z2022-05-31https://hdl.handle.net/10495/30469ABSTRACT: The demand for high-capacity batteries is increasing rapidly with the upcoming energetic needs of an ever increasing population, especially in the transportation sector. Lithium-ion battery (LIB) has emerged as an attractive technology, however the main restriction is his low energy density1. To make a post-transition possible the sodium-ion battery (SIB) are among the most promising alternatives due sodium is abundant, there are enormous availability and It's low cost2. Besides, the electrochemical principles governing LIB and SIB batteries are quite similar3. Nevertheless, for both emerging alternatives it is necessary to find more suitable electrode materials. Therefore, nowadays, different electrode materials have been explored to increase the capacity of those batteries. Specially, the layered-spinel structure has been used to improve the initial specific capacity and stability electrode materials. The Na-layered structure cathode facilitates Li+-ion diffusion in the structure4. Besides the incorporation of Ti4+ in the LiMn2O4 spinel phase is performed with the purpose of improving its stability by averting the Jahn-Teller effect of the Mn3+ and decreasing Mn2+ dissolution towards the electrolyte during cycling since Ti-O provides a higher binding energy (662 kJ/mol) than for Mn-O (402 kJ/mol)1. The aim of this investigation is to estimate the optimal stoichiometry in the (1-x)Li1-yNayM1-zTizO2x LiM2-zTizO4 layered-spinel by varying the concentration of Na+ and to assess the effects of the Na+ addition in the cycling stability of the active material. A facile sol-gel method is presented to develop new composite materials for LIB and SIB. Analysis of XRD patterns confirmed the existence of a spinel layered composite where the peaks can be indexed to the cubic spinel structure (Fd3̅m) and layered structure (c2/c) for the (020) superlattice peak at 20.5°5. For LIB cycling was performed typically between 4.8 and 2.0V vs. Li|Li+ at a constant current of 29.0 mAg-1, equivalent to 0.1 C-rate. The stoichiometry 0,5Li0.9Na0.1Mn0.4Ni0.5Ti0.1O2-0,5LiMn1.4Ni0.5Ti0.1O4 showed an initial specific capacity, ca. 141 mAhg-1 but later it presented increasing of the specific capacity, ca. 180 mAh g-1 at 15st cycling exhibiting 98% of its charge capacity after 30st cycles. Moreover, for SIB cycling was performed typically between 4.5 and 2.0V vs. Na|Na+ at a constant current of 12.0 mAg-1, equivalent to 0.1 C-rate. In this case, the stoichiometry 0,5Li0Na1.0Mn0.4Ni0.5Ti0.1O2-0,5LiMn1.4Ni0.5Ti0.1O4 showed an initial specific capacity, ca. 118 mAh g-1. Thus, by possessing interesting properties electrochemical we believe that these materials could be a potential electrode for the development of high-power rechargeable Li-ion batteries and Na-ion batteries.COL00079271application/pdfenginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/resource_type/c_5794http://purl.org/coar/resource_type/c_c94fhttps://purl.org/redcol/resource_type/ECDocumento de conferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Lithium ion batteriesSodium ion batterieshttp://id.loc.gov/authorities/subjects/sh2011000687http://id.loc.gov/authorities/subjects/sh2019000815(1-x) Li1-yNayM1-zTizO2 x LiM2-zTizO4 Layered-Spinel nanoparticles as Promising dual positive electrode for Lithium-Ion Batteries and Sodium-Ion BatteriesCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)Vancouver, Canadá241st ECS MeetingCentro de Convenciones de Vancouver, Salón 216, Vancouver, Canadá2022-05-29/2022-06-02Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODIProyecto SENECA201926930CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstream/10495/30469/3/license_rdfe2060682c9c70d4d30c83c51448f4eedMD53ORIGINALMosqueraNerly_2022_Layered_Spinel_nanoparticles_Resumen.pdfMosqueraNerly_2022_Layered_Spinel_nanoparticles_Resumen.pdfResumenapplication/pdf138507https://bibliotecadigital.udea.edu.co/bitstream/10495/30469/1/MosqueraNerly_2022_Layered_Spinel_nanoparticles_Resumen.pdf80e6c0c071a4db2be259ee36c740c0ddMD51MosqueraNerly_2022_Layered_Spinel_nanoparticles_Presentacion.pdfMosqueraNerly_2022_Layered_Spinel_nanoparticles_Presentacion.pdfPresentaciónapplication/pdf1782737https://bibliotecadigital.udea.edu.co/bitstream/10495/30469/2/MosqueraNerly_2022_Layered_Spinel_nanoparticles_Presentacion.pdf0ca34741329ac2293ee6e7ddd6e5f3f3MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30469/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5410495/30469oai:bibliotecadigital.udea.edu.co:10495/304692022-09-07 14:42:03.726Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=