Análisis predictivo sobre insolvencia de empresas en Colombia
RESUMEN: Cuando se crea una empresa, la idea que suele surgir en sus creadores es que pueda conseguir el éxito y expandirse en el mercado. Determinar los elementos que puedan producir insolvencia financiera y, posteriormente, la quiebra, permiten conseguir una oportuna intervención por parte de las...
- Autores:
-
Caita Giraldo, Laura Sofía
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/29195
- Acceso en línea:
- http://hdl.handle.net/10495/29195
- Palabra clave:
- Aprendizaje automático (inteligencia artificial)
Machine learning
Quiebra
Bankruptcy
Técnicas de predicción
Forecasting techniques
Datos desbalanceados
Insolvencia
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/
id |
UDEA2_73f7bbf8e2d04ca842d5f6bc0856732f |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/29195 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis predictivo sobre insolvencia de empresas en Colombia |
title |
Análisis predictivo sobre insolvencia de empresas en Colombia |
spellingShingle |
Análisis predictivo sobre insolvencia de empresas en Colombia Aprendizaje automático (inteligencia artificial) Machine learning Quiebra Bankruptcy Técnicas de predicción Forecasting techniques Datos desbalanceados Insolvencia |
title_short |
Análisis predictivo sobre insolvencia de empresas en Colombia |
title_full |
Análisis predictivo sobre insolvencia de empresas en Colombia |
title_fullStr |
Análisis predictivo sobre insolvencia de empresas en Colombia |
title_full_unstemmed |
Análisis predictivo sobre insolvencia de empresas en Colombia |
title_sort |
Análisis predictivo sobre insolvencia de empresas en Colombia |
dc.creator.fl_str_mv |
Caita Giraldo, Laura Sofía |
dc.contributor.advisor.none.fl_str_mv |
Sepúlveda Cano, Lina María |
dc.contributor.author.none.fl_str_mv |
Caita Giraldo, Laura Sofía |
dc.subject.lemb.none.fl_str_mv |
Aprendizaje automático (inteligencia artificial) Machine learning Quiebra Bankruptcy Técnicas de predicción Forecasting techniques |
topic |
Aprendizaje automático (inteligencia artificial) Machine learning Quiebra Bankruptcy Técnicas de predicción Forecasting techniques Datos desbalanceados Insolvencia |
dc.subject.proposal.spa.fl_str_mv |
Datos desbalanceados Insolvencia |
description |
RESUMEN: Cuando se crea una empresa, la idea que suele surgir en sus creadores es que pueda conseguir el éxito y expandirse en el mercado. Determinar los elementos que puedan producir insolvencia financiera y, posteriormente, la quiebra, permiten conseguir una oportuna intervención por parte de las organizaciones con el fin de evitar pérdidas. De igual manera, pueden ser un aviso para los bancos y proveedores, en caso de que estas empresas hagan una solicitud de créditos o préstamos. Debido a lo anterior, se plantea un algoritmo de clasificación “Solvencia” o “Insolvencia”, el cual parte del análisis de tres bases de datos diferentes de la Superintendencia de Sociedades con datos altamente desbalanceados. Se realizó todo el proceso de exploración, estandarización, selección de hiperparámetros, uso de matrices de confusión y curva ROC. El ejercicio iterativo utiliza, además, métricas como F1, Recall, Precision y Accuracy, teniendo especial cuidado con los efectos del posible sobre-entrenamiento de los modelos. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-14T16:34:14Z |
dc.date.available.none.fl_str_mv |
2022-06-14T16:34:14Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/other |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/COther |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
format |
http://purl.org/coar/resource_type/c_46ec |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/29195 |
url |
http://hdl.handle.net/10495/29195 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.extent.spa.fl_str_mv |
33 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Medellín - Colombia |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/29195/4/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/29195/5/license.txt https://bibliotecadigital.udea.edu.co/bitstream/10495/29195/1/CaitaLaura_2022_AnalisisPredictivoInsolvencia.pdf |
bitstream.checksum.fl_str_mv |
fd0548b8694973befb689f3e7a707f1d 8a4605be74aa9ea9d79846c1fba20a33 791be7fb645ff453528ccd5c0ff9d7cc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173081024659456 |
spelling |
Sepúlveda Cano, Lina MaríaCaita Giraldo, Laura Sofía2022-06-14T16:34:14Z2022-06-14T16:34:14Z2022http://hdl.handle.net/10495/29195RESUMEN: Cuando se crea una empresa, la idea que suele surgir en sus creadores es que pueda conseguir el éxito y expandirse en el mercado. Determinar los elementos que puedan producir insolvencia financiera y, posteriormente, la quiebra, permiten conseguir una oportuna intervención por parte de las organizaciones con el fin de evitar pérdidas. De igual manera, pueden ser un aviso para los bancos y proveedores, en caso de que estas empresas hagan una solicitud de créditos o préstamos. Debido a lo anterior, se plantea un algoritmo de clasificación “Solvencia” o “Insolvencia”, el cual parte del análisis de tres bases de datos diferentes de la Superintendencia de Sociedades con datos altamente desbalanceados. Se realizó todo el proceso de exploración, estandarización, selección de hiperparámetros, uso de matrices de confusión y curva ROC. El ejercicio iterativo utiliza, además, métricas como F1, Recall, Precision y Accuracy, teniendo especial cuidado con los efectos del posible sobre-entrenamiento de los modelos.33application/pdfspainfo:eu-repo/semantics/draftinfo:eu-repo/semantics/otherhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/publicdomain/zero/1.0/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Análisis predictivo sobre insolvencia de empresas en ColombiaMedellín - ColombiaAprendizaje automático (inteligencia artificial)Machine learningQuiebraBankruptcyTécnicas de predicciónForecasting techniquesDatos desbalanceadosInsolvenciahttps://github.com/lauracaita1/CaitaLaura_2022_InsolvenciaEspecialista en Analítica y Ciencia de DatosEspecializaciónFacultad de Ingeniería. Especialización en Analítica y Ciencia de DatosUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8712https://bibliotecadigital.udea.edu.co/bitstream/10495/29195/4/license_rdffd0548b8694973befb689f3e7a707f1dMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/29195/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55ORIGINALCaitaLaura_2022_AnalisisPredictivoInsolvencia.pdfCaitaLaura_2022_AnalisisPredictivoInsolvencia.pdfTrabajo de grado especializaciónapplication/pdf878989https://bibliotecadigital.udea.edu.co/bitstream/10495/29195/1/CaitaLaura_2022_AnalisisPredictivoInsolvencia.pdf791be7fb645ff453528ccd5c0ff9d7ccMD5110495/29195oai:bibliotecadigital.udea.edu.co:10495/291952022-06-14 11:34:44.691Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |