Time-dependent theoretical description of molecular autoionization produced by femtosecond xuv laser pulses

ABSTRACT: We present a nonperturbative time-dependent theoretical method to study H2 ionization with femtosecond laser pulses when the photon energy is large enough to populate the Q1 (25–28 eV) and Q2 (30–37 eV) doubly excited autoionizing states. We have investigated the role of these states in di...

Full description

Autores:
Sanz Vicario, José Luis
Bachau, Henri
Martín García, Fernando
Tipo de recurso:
Article of investigation
Fecha de publicación:
2006
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/8383
Acceso en línea:
http://hdl.handle.net/10495/8383
Palabra clave:
Estados autoionizantes
Método Feshbach
Pulsos láser
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
Description
Summary:ABSTRACT: We present a nonperturbative time-dependent theoretical method to study H2 ionization with femtosecond laser pulses when the photon energy is large enough to populate the Q1 (25–28 eV) and Q2 (30–37 eV) doubly excited autoionizing states. We have investigated the role of these states in dissociative ionization of H2 and analyzed, in the time domain, the onset of the resonant peaks appearing in the proton kinetic energy distribution. Their dependence on photon frequency and pulse duration is also analyzed. The results are compared with available experimental data and with previous theoretical results obtained within a stationary perturbative approach. The method allows us as well to obtain dissociation yields corresponding to the decay of doubly excited states into two H atoms. The calculated H(n=2) yields are in good agreement with the experimental ones.