Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets

ABSTRACT: We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave...

Full description

Autores:
Sanz Vicario, José Luis
Pérez Torres, Jhon Fredy
Moreno Polo, Germán
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/13129
Acceso en línea:
http://hdl.handle.net/10495/13129
Palabra clave:
Descomposición de Schmidt
Onda expandidas
Bases no ortogonales
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id UDEA2_71655e49cd58fa926d728a69e9bbc7d8
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/13129
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
spellingShingle Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
Descomposición de Schmidt
Onda expandidas
Bases no ortogonales
title_short Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title_full Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title_fullStr Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title_full_unstemmed Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
title_sort Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets
dc.creator.fl_str_mv Sanz Vicario, José Luis
Pérez Torres, Jhon Fredy
Moreno Polo, Germán
dc.contributor.author.none.fl_str_mv Sanz Vicario, José Luis
Pérez Torres, Jhon Fredy
Moreno Polo, Germán
dc.subject.none.fl_str_mv Descomposición de Schmidt
Onda expandidas
Bases no ortogonales
topic Descomposición de Schmidt
Onda expandidas
Bases no ortogonales
description ABSTRACT: We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within themanifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-01-14T03:47:47Z
dc.date.available.none.fl_str_mv 2020-01-14T03:47:47Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Articulo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Sanz-Vicario, J. L., Pérez-Torres, J. F., & Moreno-Polo, G. (2017). Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets. Physical Review A, 96 (022503), 1-14. https://doi.org/10.1103/PhysRevA.96.022503
dc.identifier.issn.none.fl_str_mv 2469-9926
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/13129
dc.identifier.doi.none.fl_str_mv 10.1103/PhysRevA.96.022503
dc.identifier.eissn.none.fl_str_mv 2469-9934
identifier_str_mv Sanz-Vicario, J. L., Pérez-Torres, J. F., & Moreno-Polo, G. (2017). Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets. Physical Review A, 96 (022503), 1-14. https://doi.org/10.1103/PhysRevA.96.022503
2469-9926
10.1103/PhysRevA.96.022503
2469-9934
url http://hdl.handle.net/10495/13129
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Phys. Rev. D
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv American Physical Society
dc.publisher.group.spa.fl_str_mv Grupo de Física Atómica y Molecular
dc.publisher.place.spa.fl_str_mv Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/1/SanzJose_2017_ElectronicNuclearEntanglement.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/2/license_url
http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/3/license_text
http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/4/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/5/license.txt
bitstream.checksum.fl_str_mv 1ea15907149d50dad93b387eaf1a2074
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173261565329408
spelling Sanz Vicario, José LuisPérez Torres, Jhon FredyMoreno Polo, Germán2020-01-14T03:47:47Z2020-01-14T03:47:47Z2017Sanz-Vicario, J. L., Pérez-Torres, J. F., & Moreno-Polo, G. (2017). Electronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis sets. Physical Review A, 96 (022503), 1-14. https://doi.org/10.1103/PhysRevA.96.0225032469-9926http://hdl.handle.net/10495/1312910.1103/PhysRevA.96.0225032469-9934ABSTRACT: We compute the entanglement between the electronic and vibrational motions in the simplest molecular system, the hydrogen molecular ion, considering the molecule as a bipartite system, electron and vibrational motion. For that purpose we compute an accurate total non-Born-Oppenheimer wave function in terms of a huge expansion using nonorthogonal B-spline basis sets that expand separately the electronic and nuclear wave functions. According to the Schmidt decomposition theorem for bipartite systems, widely used in quantum-information theory, it is possible to find a much shorter but equivalent expansion in terms of the natural orbitals or Schmidt bases for the electronic and nuclear half spaces. Here we extend the Schmidt decomposition theorem to the case in which nonorthogonal bases are used to span the partitioned Hilbert spaces. This extension is first illustrated with two simple coupled systems, the former without an exact solution and the latter exactly solvable. In these model systems of distinguishable coupled particles it is shown that the entanglement content does not increase monotonically with the excitation energy, but only within themanifold of states that belong to an existing excitation mode, if any. In the hydrogen molecular ion the entanglement content for each non-Born-Oppenheimer vibronic state is quantified through the von Neumann and linear entropies and we show that entanglement serves as a witness to distinguish vibronic states related to different Born-Oppenheimer molecular energy curves or electronic excitation modes.application/pdfengAmerican Physical SocietyGrupo de Física Atómica y MolecularEstados Unidosinfo:eu-repo/semantics/lecturehttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_8544https://purl.org/redcol/resource_type/ARTArticulo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/version/c_71e4c1898caa6e32Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Descomposición de SchmidtOnda expandidasBases no ortogonalesElectronic-nuclear entanglement in H2 +: Schmidt decomposition of non-Born-Oppenheimer wave functions expanded in nonorthogonal basis setsPhys. Rev. DPhysical Review A9622503ORIGINALSanzJose_2017_ElectronicNuclearEntanglement.pdfSanzJose_2017_ElectronicNuclearEntanglement.pdfArticulo de investigaciónapplication/pdf4316615http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/1/SanzJose_2017_ElectronicNuclearEntanglement.pdf1ea15907149d50dad93b387eaf1a2074MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/13129/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5510495/13129oai:bibliotecadigital.udea.edu.co:10495/131292021-05-16 11:49:17.605Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=