Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem

ABSTRACT: In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilb...

Full description

Autores:
Uyi Afuwape, Anthony
Balla, M. Y.
Udo-utun, Xavier
Tipo de recurso:
Article of investigation
Fecha de publicación:
2012
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/25444
Acceso en línea:
http://hdl.handle.net/10495/25444
Palabra clave:
Ecuaciones de Volterra
Volterra equations
Espacio de Hilbert
Hilbert space
Espacio de Banach
Banach spaces
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_70a429a193682e927aef25191b8081e1
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/25444
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
title Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
spellingShingle Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
Ecuaciones de Volterra
Volterra equations
Espacio de Hilbert
Hilbert space
Espacio de Banach
Banach spaces
title_short Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
title_full Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
title_fullStr Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
title_full_unstemmed Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
title_sort Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem
dc.creator.fl_str_mv Uyi Afuwape, Anthony
Balla, M. Y.
Udo-utun, Xavier
dc.contributor.author.none.fl_str_mv Uyi Afuwape, Anthony
Balla, M. Y.
Udo-utun, Xavier
dc.subject.lemb.none.fl_str_mv Ecuaciones de Volterra
Volterra equations
Espacio de Hilbert
Hilbert space
Espacio de Banach
Banach spaces
topic Ecuaciones de Volterra
Volterra equations
Espacio de Hilbert
Hilbert space
Espacio de Banach
Banach spaces
description ABSTRACT: In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space L2[0, ∞)). However applying Osilike-Akuchu[10] theorem and recent results (in Hilbert space) of Igbokwe and Udoutun[8] we formulate conditions for finding approximate cycles of the second kind (in the Hilbert space W2,20 [0, ∞)) to this problem given in the form x′′′ + ax′′ + g(x′) + φ(x) = 0.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2022-01-21T14:38:47Z
dc.date.available.none.fl_str_mv 2022-01-21T14:38:47Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1224-1784
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/25444
dc.identifier.doi.none.fl_str_mv 10.2478/v10309-012-0001-z
dc.identifier.eissn.none.fl_str_mv 1844-0835
identifier_str_mv 1224-1784
10.2478/v10309-012-0001-z
1844-0835
url http://hdl.handle.net/10495/25444
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.extent.spa.fl_str_mv 10
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universitatea „Ovidius” din Constanța
dc.publisher.group.spa.fl_str_mv Modelación con Ecuaciones Diferenciales
dc.publisher.place.spa.fl_str_mv Constanza, Rumanía
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/25444/1/UdoutunXavier_2012_ApproximateCyclesSecond.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/25444/2/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/25444/3/license.txt
bitstream.checksum.fl_str_mv dd7cc11087a2e5c8c7012e0a00ff21c4
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173161409544192
spelling Uyi Afuwape, AnthonyBalla, M. Y.Udo-utun, Xavier2022-01-21T14:38:47Z2022-01-21T14:38:47Z20121224-1784http://hdl.handle.net/10495/2544410.2478/v10309-012-0001-z1844-0835ABSTRACT: In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space L2[0, ∞)). However applying Osilike-Akuchu[10] theorem and recent results (in Hilbert space) of Igbokwe and Udoutun[8] we formulate conditions for finding approximate cycles of the second kind (in the Hilbert space W2,20 [0, ∞)) to this problem given in the form x′′′ + ax′′ + g(x′) + φ(x) = 0.COL002436510application/pdfengUniversitatea „Ovidius” din ConstanțaModelación con Ecuaciones DiferencialesConstanza, Rumaníainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-nd/4.0/Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo ProblemEcuaciones de VolterraVolterra equationsEspacio de HilbertHilbert spaceEspacio de BanachBanach spacesAnalele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica514201ORIGINALUdoutunXavier_2012_ApproximateCyclesSecond.pdfUdoutunXavier_2012_ApproximateCyclesSecond.pdfArtículo de investigaciónapplication/pdf120301https://bibliotecadigital.udea.edu.co/bitstream/10495/25444/1/UdoutunXavier_2012_ApproximateCyclesSecond.pdfdd7cc11087a2e5c8c7012e0a00ff21c4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstream/10495/25444/2/license_rdfb88b088d9957e670ce3b3fbe2eedbc13MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/25444/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/25444oai:bibliotecadigital.udea.edu.co:10495/254442022-09-02 13:09:39.679Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=