Approximate Cycles of the Second Kind in Hilbert space for a Generalized Barbashin-Ezeilo Problem

ABSTRACT: In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilb...

Full description

Autores:
Uyi Afuwape, Anthony
Balla, M. Y.
Udo-utun, Xavier
Tipo de recurso:
Article of investigation
Fecha de publicación:
2012
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/25444
Acceso en línea:
http://hdl.handle.net/10495/25444
Palabra clave:
Ecuaciones de Volterra
Volterra equations
Espacio de Hilbert
Hilbert space
Espacio de Banach
Banach spaces
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Description
Summary:ABSTRACT: In this work we show that the Volterra integral operator defined on the space of absolutely stable functions induces an asymptotically pseudocontractive operator. We, then, show that Afuwape’s [1] generalization of the Barbashin-Ezeilo problem is solvable in a Banach space (but not in Hilbert space L2[0, ∞)). However applying Osilike-Akuchu[10] theorem and recent results (in Hilbert space) of Igbokwe and Udoutun[8] we formulate conditions for finding approximate cycles of the second kind (in the Hilbert space W2,20 [0, ∞)) to this problem given in the form x′′′ + ax′′ + g(x′) + φ(x) = 0.