Key players in the reproductive transition in neotropical orchids : a departure from model monocots
ABSTRACT: During the reproductive transition in angiosperms, flowering integrators set the timing of meristem fate shifts, when a vegetative apical meristem (SAM) forming leaves, becomes an inflorescence meristem (IM) that forms bracts and flowers. This process has been well studied in model grasses...
- Autores:
-
Madrigal Bedoya, Yesenia
Scanlon, Michael
Alzate Restrepo, Juan Fernando
Pabón Mora, Natalia
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_5794
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30029
- Acceso en línea:
- https://hdl.handle.net/10495/30029
- Palabra clave:
- Biología evolutiva
Developmental biology
Crecimiento (plantas)
Growth (plants)
Genética del desarrollo
Developmental genetics
Floración
Flowering
Orchidaceae
Evo-Devo
http://aims.fao.org/aos/agrovoc/c_2992
http://aims.fao.org/aos/agrovoc/c_5380
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 2.5 Colombia
id |
UDEA2_6c81c0e5300221a80f4b6f433c123f0d |
---|---|
oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30029 |
network_acronym_str |
UDEA2 |
network_name_str |
Repositorio UdeA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Key players in the reproductive transition in neotropical orchids : a departure from model monocots |
title |
Key players in the reproductive transition in neotropical orchids : a departure from model monocots |
spellingShingle |
Key players in the reproductive transition in neotropical orchids : a departure from model monocots Biología evolutiva Developmental biology Crecimiento (plantas) Growth (plants) Genética del desarrollo Developmental genetics Floración Flowering Orchidaceae Evo-Devo http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_5380 |
title_short |
Key players in the reproductive transition in neotropical orchids : a departure from model monocots |
title_full |
Key players in the reproductive transition in neotropical orchids : a departure from model monocots |
title_fullStr |
Key players in the reproductive transition in neotropical orchids : a departure from model monocots |
title_full_unstemmed |
Key players in the reproductive transition in neotropical orchids : a departure from model monocots |
title_sort |
Key players in the reproductive transition in neotropical orchids : a departure from model monocots |
dc.creator.fl_str_mv |
Madrigal Bedoya, Yesenia Scanlon, Michael Alzate Restrepo, Juan Fernando Pabón Mora, Natalia |
dc.contributor.author.none.fl_str_mv |
Madrigal Bedoya, Yesenia Scanlon, Michael Alzate Restrepo, Juan Fernando Pabón Mora, Natalia |
dc.subject.lemb.none.fl_str_mv |
Biología evolutiva Developmental biology Crecimiento (plantas) Growth (plants) Genética del desarrollo Developmental genetics |
topic |
Biología evolutiva Developmental biology Crecimiento (plantas) Growth (plants) Genética del desarrollo Developmental genetics Floración Flowering Orchidaceae Evo-Devo http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_5380 |
dc.subject.agrovoc.none.fl_str_mv |
Floración Flowering Orchidaceae |
dc.subject.proposal.spa.fl_str_mv |
Evo-Devo |
dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_2992 http://aims.fao.org/aos/agrovoc/c_5380 |
description |
ABSTRACT: During the reproductive transition in angiosperms, flowering integrators set the timing of meristem fate shifts, when a vegetative apical meristem (SAM) forming leaves, becomes an inflorescence meristem (IM) that forms bracts and flowers. This process has been well studied in model grasses, like Oryza sativa and includes flowering promoters like Heading date 3a (Hd3a) (FLOWERING LOCUS T-FT), Heading date 1 (Hd1) (CONSTANS-CO), FLOWERING LOCUS D (OsFD1) and 14–3–3 proteins that activate floral meristem identity genes. Repressors involved in the maintenance of the vegetative phases include TERMINAL FLOWER LOCUS 1 (TFL1) and OsMADS55 (AGL24/SVP). Additional repressors have been identified in vernalization responsive grasses like wheat, specifically FLOWERING LOCUS C (FLC) and VERNALIZATION 2 (VRN2). Here we studied the morpho-anatomical and molecular basis of the flowering transition in the Orchidaceae, one of the most diverse angiosperm lineage (ca. 29,000 species) with outstanding habit variations and niche adaptations. We combine RNA-seq analyses targeting differentially expressed genes (DEGs) between SAM and IM with targeted evaluation of spatio-temporal expression patterns of major regulators in Epidendrum fimbriatum, a miniature terrestrial orchid with nearly constant flowering in the field. We found 40 DEGs between SAM and IM involved in reproductive transition that let us to re-evaluate the Flowering Genetic Regulatory Network (FGRN) in orchids when compared to the model species O. sativa. We found that: 1) flowering integrators are present in multiple copies in orchids but only few of them are transcriptionally active and 2) the canonical flowering integrators are maintained, but due to copy number variation functional changes seem plausible. For instance, PEBP gene expression patterns suggest sub-functionalization with TFL1 expressed in the SAM, FT1C in leaves, and FT2A in the IM. Similarly, SVP genes, have also specialized, as SVP2A is expressed in both the SAM and IM, but SVP2B is restricted to the IM and SVP1 restricted to the SAM. Conversely, FD, LFY and SOC1 genes show broad expression during vegetative and reproductive stages, suggesting they may act redundantly. Our comprehensive analysis of the orchid FGRN point to a modified set of flowering integrators in the reproductive transition, with FT2 and FUL-like genes as major promoters and SVP1 and SVP2A homologs as key repressors in the absence of FLC, deviating from model monocot FGRNs. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-10T15:07:03Z |
dc.date.available.none.fl_str_mv |
2022-08-10T15:07:03Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_5794 |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/EC |
dc.type.local.spa.fl_str_mv |
Documento de conferencia |
format |
http://purl.org/coar/resource_type/c_5794 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30029 |
url |
https://hdl.handle.net/10495/30029 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.extent.spa.fl_str_mv |
1 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.group.spa.fl_str_mv |
Evo-Devo en Plantas |
institution |
Universidad de Antioquia |
bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstream/10495/30029/1/Madrigal_Yesenia_2022_ReproductiveNeotropicalOrchids.pdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30029/2/license_rdf https://bibliotecadigital.udea.edu.co/bitstream/10495/30029/3/license.txt |
bitstream.checksum.fl_str_mv |
20bf90a5c1a1041692b2a4f4db4e4dd5 e2060682c9c70d4d30c83c51448f4eed 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Antioquia |
repository.mail.fl_str_mv |
andres.perez@udea.edu.co |
_version_ |
1812173240457494528 |
spelling |
Madrigal Bedoya, YeseniaScanlon, MichaelAlzate Restrepo, Juan FernandoPabón Mora, Natalia2022-08-10T15:07:03Z2022-08-10T15:07:03Z2022https://hdl.handle.net/10495/30029ABSTRACT: During the reproductive transition in angiosperms, flowering integrators set the timing of meristem fate shifts, when a vegetative apical meristem (SAM) forming leaves, becomes an inflorescence meristem (IM) that forms bracts and flowers. This process has been well studied in model grasses, like Oryza sativa and includes flowering promoters like Heading date 3a (Hd3a) (FLOWERING LOCUS T-FT), Heading date 1 (Hd1) (CONSTANS-CO), FLOWERING LOCUS D (OsFD1) and 14–3–3 proteins that activate floral meristem identity genes. Repressors involved in the maintenance of the vegetative phases include TERMINAL FLOWER LOCUS 1 (TFL1) and OsMADS55 (AGL24/SVP). Additional repressors have been identified in vernalization responsive grasses like wheat, specifically FLOWERING LOCUS C (FLC) and VERNALIZATION 2 (VRN2). Here we studied the morpho-anatomical and molecular basis of the flowering transition in the Orchidaceae, one of the most diverse angiosperm lineage (ca. 29,000 species) with outstanding habit variations and niche adaptations. We combine RNA-seq analyses targeting differentially expressed genes (DEGs) between SAM and IM with targeted evaluation of spatio-temporal expression patterns of major regulators in Epidendrum fimbriatum, a miniature terrestrial orchid with nearly constant flowering in the field. We found 40 DEGs between SAM and IM involved in reproductive transition that let us to re-evaluate the Flowering Genetic Regulatory Network (FGRN) in orchids when compared to the model species O. sativa. We found that: 1) flowering integrators are present in multiple copies in orchids but only few of them are transcriptionally active and 2) the canonical flowering integrators are maintained, but due to copy number variation functional changes seem plausible. For instance, PEBP gene expression patterns suggest sub-functionalization with TFL1 expressed in the SAM, FT1C in leaves, and FT2A in the IM. Similarly, SVP genes, have also specialized, as SVP2A is expressed in both the SAM and IM, but SVP2B is restricted to the IM and SVP1 restricted to the SAM. Conversely, FD, LFY and SOC1 genes show broad expression during vegetative and reproductive stages, suggesting they may act redundantly. Our comprehensive analysis of the orchid FGRN point to a modified set of flowering integrators in the reproductive transition, with FT2 and FUL-like genes as major promoters and SVP1 and SVP2A homologs as key repressors in the absence of FLC, deviating from model monocot FGRNs.COL01702921application/pdfenginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://purl.org/coar/resource_type/c_5794http://purl.org/coar/resource_type/c_c94fhttps://purl.org/redcol/resource_type/ECDocumento de conferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Key players in the reproductive transition in neotropical orchids : a departure from model monocotsEvo-Devo en PlantasBiología evolutivaDevelopmental biologyCrecimiento (plantas)Growth (plants)Genética del desarrolloDevelopmental geneticsFloraciónFloweringOrchidaceaeEvo-Devohttp://aims.fao.org/aos/agrovoc/c_2992http://aims.fao.org/aos/agrovoc/c_5380Botany 2022 - Plants at the ExtremeAnchorage, Alaska2022-07-24/2022-07-27ORIGINALMadrigal_Yesenia_2022_ReproductiveNeotropicalOrchids.pdfMadrigal_Yesenia_2022_ReproductiveNeotropicalOrchids.pdfDocumento de conferenciaapplication/pdf88043https://bibliotecadigital.udea.edu.co/bitstream/10495/30029/1/Madrigal_Yesenia_2022_ReproductiveNeotropicalOrchids.pdf20bf90a5c1a1041692b2a4f4db4e4dd5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstream/10495/30029/2/license_rdfe2060682c9c70d4d30c83c51448f4eedMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/30029/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5310495/30029oai:bibliotecadigital.udea.edu.co:10495/300292022-08-10 10:07:04.79Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |