Expert knowledge-guided feature selection for data-based industrial process monitoring

RESUMEN: Los procesos industriales se caracterizan por estar en ambientes abiertos, inciertos y no lineales. La medición y monitoreo de estos busca calidad, seguridad y economía en los productos. Los sistemas de monitoreo basados en datos han ganado un gran interés en la academia y en la industria,...

Full description

Autores:
Isaza Narváez, Claudia Victoria
Tipo de recurso:
Article of investigation
Fecha de publicación:
2012
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/5401
Acceso en línea:
http://hdl.handle.net/10495/5401
Palabra clave:
Control de procesos industriales
Monitoreo de procesos
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
id UDEA2_6b9499e33e5c351f52e6705ce1a521cc
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/5401
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Expert knowledge-guided feature selection for data-based industrial process monitoring
dc.title.alternative.spa.fl_str_mv Selección de variables guiada por conocimiento del experto para el monitoreo basados en datos de procesos industriales
title Expert knowledge-guided feature selection for data-based industrial process monitoring
spellingShingle Expert knowledge-guided feature selection for data-based industrial process monitoring
Control de procesos industriales
Monitoreo de procesos
title_short Expert knowledge-guided feature selection for data-based industrial process monitoring
title_full Expert knowledge-guided feature selection for data-based industrial process monitoring
title_fullStr Expert knowledge-guided feature selection for data-based industrial process monitoring
title_full_unstemmed Expert knowledge-guided feature selection for data-based industrial process monitoring
title_sort Expert knowledge-guided feature selection for data-based industrial process monitoring
dc.creator.fl_str_mv Isaza Narváez, Claudia Victoria
dc.contributor.author.none.fl_str_mv Isaza Narváez, Claudia Victoria
dc.subject.none.fl_str_mv Control de procesos industriales
Monitoreo de procesos
topic Control de procesos industriales
Monitoreo de procesos
description RESUMEN: Los procesos industriales se caracterizan por estar en ambientes abiertos, inciertos y no lineales. La medición y monitoreo de estos busca calidad, seguridad y economía en los productos. Los sistemas de monitoreo basados en datos han ganado un gran interés en la academia y en la industria, pero los procesos industriales tienen grandes volúmenes de datos complejos y de alta dimensión, con dominios pocos definidos, medidas redundantes, ruidosas e imprecisas y parámetros desconocidos. Cuando un modelo mecánico no está disponible, seleccionar las variables relevantes e informativas (reduciendo la dimensión de datos) facilita la identificación de los patrones en los estados funcionales del proceso. En este artículo se propone usar el conocimiento del experto como guía dentro de un wrapper de selección de descriptores basado en agrupamiento para reducir el conjunto de variables necesarias para representar la estructura intrínseca de los datos históricos del proceso. Un sistema de monitoreo es propuesto y evaluado en un reactor de intensificación, el Open Plate Reactor, en las reacciones de tiosulfato y esterificación. Los resultados muestran que sólo algunas variables son necesarias para identificar correctamente los estados funcionales del proceso.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2016-11-18T01:13:28Z
dc.date.available.none.fl_str_mv 2016-11-18T01:13:28Z
dc.type.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.local.spa.fl_str_mv Artículo de investigación
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv C. Uribe and C. V. Isaza, "Expert knowledge-guided feature selection for data-based industrial process monitoring", Rev. Fac. Ing. Univ. Antioquia, no. 65, pp. 112-125, 2012.
dc.identifier.issn.none.fl_str_mv 0120-6230
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/5401
dc.identifier.eissn.none.fl_str_mv 2422-2844
identifier_str_mv C. Uribe and C. V. Isaza, "Expert knowledge-guided feature selection for data-based industrial process monitoring", Rev. Fac. Ing. Univ. Antioquia, no. 65, pp. 112-125, 2012.
0120-6230
2422-2844
url http://hdl.handle.net/10495/5401
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Fac. Ing. Univ. Antioquia
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia, Facultad de Ingeniería
dc.publisher.group.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/1/UribeCesar_2012_ExpertKnowledgeGuided.pdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/2/license_url
https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/3/license_text
https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/4/license_rdf
https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/5/license.txt
bitstream.checksum.fl_str_mv 5ae9fa9c75b79b4a6be0a24c466ee661
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173301907193856
spelling Isaza Narváez, Claudia Victoria2016-11-18T01:13:28Z2016-11-18T01:13:28Z2012C. Uribe and C. V. Isaza, "Expert knowledge-guided feature selection for data-based industrial process monitoring", Rev. Fac. Ing. Univ. Antioquia, no. 65, pp. 112-125, 2012.0120-6230http://hdl.handle.net/10495/54012422-2844RESUMEN: Los procesos industriales se caracterizan por estar en ambientes abiertos, inciertos y no lineales. La medición y monitoreo de estos busca calidad, seguridad y economía en los productos. Los sistemas de monitoreo basados en datos han ganado un gran interés en la academia y en la industria, pero los procesos industriales tienen grandes volúmenes de datos complejos y de alta dimensión, con dominios pocos definidos, medidas redundantes, ruidosas e imprecisas y parámetros desconocidos. Cuando un modelo mecánico no está disponible, seleccionar las variables relevantes e informativas (reduciendo la dimensión de datos) facilita la identificación de los patrones en los estados funcionales del proceso. En este artículo se propone usar el conocimiento del experto como guía dentro de un wrapper de selección de descriptores basado en agrupamiento para reducir el conjunto de variables necesarias para representar la estructura intrínseca de los datos históricos del proceso. Un sistema de monitoreo es propuesto y evaluado en un reactor de intensificación, el Open Plate Reactor, en las reacciones de tiosulfato y esterificación. Los resultados muestran que sólo algunas variables son necesarias para identificar correctamente los estados funcionales del proceso.ABSTRACT: Indrustial processes are characterized to be in open environments with uncertainty, unpredictability and nonlinear behavior. Rigorous measuring and monitoring is required to strive for product quality, safety and finance. Therefore, data-based monitoring systems have gain interest in academia and industry (e.g. clustering). However industrial processes have high volumes of complex and high dimensional data available, with poorly defined domains and sometimes redundant, noisy or inaccurate measures with unknow parameters. When a mechanistic or structural model is not available or suitable, selecting relevant and informative variables (reducing the high dimensionality) eases pattern recognition to identify functional states of the process. In this paper, we address the feature selection problem in data-based industrial processes monitoring where a mathematical or structural model is not available or suitable. Expert knowledge-quidance is used inside a wrapper feature selction based on clustering. The reduced set of features is capable of represent intrinsic historical-data structure integrating the expert knowledge abput the process. A monitoring system is proposed and tested on an intesification reactor (OPR)', over the thiosulfate and the esterifictation reaction. Results show fewer variables are needed to correctly identify the process functional states.13application/pdfengUniversidad de Antioquia, Facultad de IngenieríaSistemas Embebidos e Inteligencia Computacional (SISTEMIC)Medellín, Colombiainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTArtículo de investigaciónhttp://purl.org/coar/version/c_970fb48d4fbd8a85Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Control de procesos industrialesMonitoreo de procesosExpert knowledge-guided feature selection for data-based industrial process monitoringSelección de variables guiada por conocimiento del experto para el monitoreo basados en datos de procesos industrialesRev. Fac. Ing. Univ. AntioquiaRevista Facultad de Ingeniería Universidad de Antioquia11212565ORIGINALUribeCesar_2012_ExpertKnowledgeGuided.pdfUribeCesar_2012_ExpertKnowledgeGuided.pdfArtículo de investigaciónapplication/pdf1954388https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/1/UribeCesar_2012_ExpertKnowledgeGuided.pdf5ae9fa9c75b79b4a6be0a24c466ee661MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstream/10495/5401/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5510495/5401oai:bibliotecadigital.udea.edu.co:10495/54012023-08-04 15:07:14.756Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=