Pronóstico del precio de la energía eléctrica usando redes neuronales artificiales

RESUMEN: Este trabajo propone un modelo para el pronóstico del precio de la energía eléctrica en Colombia mediante el uso de redes neuronales artificiales. Se utilizan dos estructuras de redes incluyendo como entradas la serie de precios diarios en la primera y la serie de precios más el nivel medio...

Full description

Autores:
Cadavid Carmona, Diego Raúl
Molina Castro, Juan David
Tipo de recurso:
Article of investigation
Fecha de publicación:
2008
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/4805
Acceso en línea:
http://hdl.handle.net/10495/4805
Palabra clave:
Energía eléctrica
Precios de la energía
Redes neurales (informática)
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
Description
Summary:RESUMEN: Este trabajo propone un modelo para el pronóstico del precio de la energía eléctrica en Colombia mediante el uso de redes neuronales artificiales. Se utilizan dos estructuras de redes incluyendo como entradas la serie de precios diarios en la primera y la serie de precios más el nivel medio de los embalses en la segunda. Los resultados se comparan con un modelo Autorregresivo Condicional Heterocedástico Generalizado (GARCH) encontrándose ventajas en este último dentro del período de muestreo, pero un mejor desempeño de las redes neuronales en el período fuera de la muestra. Los datos históricos se obtuvieron de la Compañía XM perteneciente al grupo ISA, de los cuales se usan 120 días para entrenamiento y los 31 días del mes siguiente para verificación del pronóstico.