Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
ABSTRACT : One of the most challenging tasks in unsupervised algorithms is determining the number of clusters, for which Clustering Internal Validity Indices (CIVIs) have been developed. CIVIs are based on metrics such as compactness and separation to evaluate partitions and assist in the quest for...
- Autores:
-
Rendon Hurtado, Nestor David
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/43809
- Acceso en línea:
- https://hdl.handle.net/10495/43809
- Palabra clave:
- Algoritmos (computadores)
Computer algorithms
Agrupamiento de términos
Terms clustering
Emisión acústica
Acoustic emission
Clustering validation indice
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_65dca403f74e612fa219642090aa01ea |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/43809 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Internal clustering validation method for ecosystem health identification using passive acoustic monitoring |
| title |
Internal clustering validation method for ecosystem health identification using passive acoustic monitoring |
| spellingShingle |
Internal clustering validation method for ecosystem health identification using passive acoustic monitoring Algoritmos (computadores) Computer algorithms Agrupamiento de términos Terms clustering Emisión acústica Acoustic emission Clustering validation indice |
| title_short |
Internal clustering validation method for ecosystem health identification using passive acoustic monitoring |
| title_full |
Internal clustering validation method for ecosystem health identification using passive acoustic monitoring |
| title_fullStr |
Internal clustering validation method for ecosystem health identification using passive acoustic monitoring |
| title_full_unstemmed |
Internal clustering validation method for ecosystem health identification using passive acoustic monitoring |
| title_sort |
Internal clustering validation method for ecosystem health identification using passive acoustic monitoring |
| dc.creator.fl_str_mv |
Rendon Hurtado, Nestor David |
| dc.contributor.advisor.none.fl_str_mv |
Isaza Narvaez, Claudia Victoria |
| dc.contributor.author.none.fl_str_mv |
Rendon Hurtado, Nestor David |
| dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.lemb.none.fl_str_mv |
Algoritmos (computadores) Computer algorithms Agrupamiento de términos Terms clustering Emisión acústica Acoustic emission |
| topic |
Algoritmos (computadores) Computer algorithms Agrupamiento de términos Terms clustering Emisión acústica Acoustic emission Clustering validation indice |
| dc.subject.proposal.spa.fl_str_mv |
Clustering validation indice |
| description |
ABSTRACT : One of the most challenging tasks in unsupervised algorithms is determining the number of clusters, for which Clustering Internal Validity Indices (CIVIs) have been developed. CIVIs are based on metrics such as compactness and separation to evaluate partitions and assist in the quest for the optimal number of clusters. Nevertheless, specialized CIVIs tailored for specific applications have been devised, and there exists no allencompassing CIVI applicable to all scenarios. One contemporary application where such an approach is employed is Passive Acoustic Monitoring (PAM), which employs soundscape data to comprehend community dynamics and complement landscape information. PAM utilizes acoustic variables, including acoustic indices—mathematical functions designed to elucidate various aspects of the complexity within sound recordings. Furthermore, although a relationship between the soundscape and landscape features has been established, there are currently no methodologies that allow for the interpretable integration of acoustic indices into unsupervised algorithms. This gap, in part, arises from the absence of CIVIs based on crisp uncertainty metrics, which is especially critical in decision-making processes like PAM, which often involve ambiguity, non-convex distributions, outliers, and data overlap. This document presents the proposal of a novel CIVI, Uncertainty Frechet (UF), capable of determining the optimal number of clusters for PAM applications. The UF index has also demonstrated proficiency across a multitude of benchmark databases and synthetic datasets. Additionally, the index was employed in two PAM methodologies: the first displayed remarkable performance in identifying ecosystem transformations in an unsupervised manner, tested within a tropical dry forest in Bolivar, Colombia. The second methodology aids in creating acoustic similarity maps, integrating acoustic index information to represent similarities among diferent acoustic patterns across a region. This methodology was tested in an ecosystem with various types of coverage, demonstrating a relationship between i the results and various ecological indicators. The results, both of the UF index and the methodologies, establish the UF index as a valuable tool for researchers and practitioners working for both PAM applications and highly uncertain data applications . |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-11-28T13:09:31Z |
| dc.date.available.none.fl_str_mv |
2024-11-28T13:09:31Z |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Doctorado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/43809 |
| url |
https://hdl.handle.net/10495/43809 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
117 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computación |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/7aadcd15-1122-4fa2-9310-37804a0b661d/download https://bibliotecadigital.udea.edu.co/bitstreams/5e946127-2081-490b-8710-53315ca61e77/download https://bibliotecadigital.udea.edu.co/bitstreams/775c17d7-9552-4ee8-afa2-092a80ef0280/download https://bibliotecadigital.udea.edu.co/bitstreams/bcba6794-1126-43a9-9fae-487c9113f2bc/download https://bibliotecadigital.udea.edu.co/bitstreams/5229c92d-191e-441e-bfda-e9d42806e381/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c ea59d753e3109e014d1d52a06b096fc0 8a4605be74aa9ea9d79846c1fba20a33 1196bad2c41211a072cba3f934e87a3f 2e208909a153b3fb5542e22fc98fa21d |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052281078743040 |
| spelling |
Isaza Narvaez, Claudia VictoriaRendon Hurtado, Nestor DavidSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2024-11-28T13:09:31Z2024-11-28T13:09:31Z2024https://hdl.handle.net/10495/43809ABSTRACT : One of the most challenging tasks in unsupervised algorithms is determining the number of clusters, for which Clustering Internal Validity Indices (CIVIs) have been developed. CIVIs are based on metrics such as compactness and separation to evaluate partitions and assist in the quest for the optimal number of clusters. Nevertheless, specialized CIVIs tailored for specific applications have been devised, and there exists no allencompassing CIVI applicable to all scenarios. One contemporary application where such an approach is employed is Passive Acoustic Monitoring (PAM), which employs soundscape data to comprehend community dynamics and complement landscape information. PAM utilizes acoustic variables, including acoustic indices—mathematical functions designed to elucidate various aspects of the complexity within sound recordings. Furthermore, although a relationship between the soundscape and landscape features has been established, there are currently no methodologies that allow for the interpretable integration of acoustic indices into unsupervised algorithms. This gap, in part, arises from the absence of CIVIs based on crisp uncertainty metrics, which is especially critical in decision-making processes like PAM, which often involve ambiguity, non-convex distributions, outliers, and data overlap. This document presents the proposal of a novel CIVI, Uncertainty Frechet (UF), capable of determining the optimal number of clusters for PAM applications. The UF index has also demonstrated proficiency across a multitude of benchmark databases and synthetic datasets. Additionally, the index was employed in two PAM methodologies: the first displayed remarkable performance in identifying ecosystem transformations in an unsupervised manner, tested within a tropical dry forest in Bolivar, Colombia. The second methodology aids in creating acoustic similarity maps, integrating acoustic index information to represent similarities among diferent acoustic patterns across a region. This methodology was tested in an ecosystem with various types of coverage, demonstrating a relationship between i the results and various ecological indicators. The results, both of the UF index and the methodologies, establish the UF index as a valuable tool for researchers and practitioners working for both PAM applications and highly uncertain data applications .COL0010717DoctoradoDoctor en Ingeniería Electrónica y Computación117 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computaciónhttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Internal clustering validation method for ecosystem health identification using passive acoustic monitoringTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftAlgoritmos (computadores)Computer algorithmsAgrupamiento de términosTerms clusteringEmisión acústicaAcoustic emissionClustering validation indicePublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/7aadcd15-1122-4fa2-9310-37804a0b661d/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADORIGINALRendonNestor_2024_InternalClusteringValidationRendonNestor_2024_InternalClusteringValidationTesis doctoralapplication/pdf64175142https://bibliotecadigital.udea.edu.co/bitstreams/5e946127-2081-490b-8710-53315ca61e77/downloadea59d753e3109e014d1d52a06b096fc0MD51trueAnonymousREAD2026-11-28LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/775c17d7-9552-4ee8-afa2-092a80ef0280/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTRendonNestor_2024_InternalClusteringValidation.txtRendonNestor_2024_InternalClusteringValidation.txtExtracted texttext/plain105964https://bibliotecadigital.udea.edu.co/bitstreams/bcba6794-1126-43a9-9fae-487c9113f2bc/download1196bad2c41211a072cba3f934e87a3fMD54falseAnonymousREAD2026-11-28THUMBNAILRendonNestor_2024_InternalClusteringValidation.jpgRendonNestor_2024_InternalClusteringValidation.jpgGenerated Thumbnailimage/jpeg6577https://bibliotecadigital.udea.edu.co/bitstreams/5229c92d-191e-441e-bfda-e9d42806e381/download2e208909a153b3fb5542e22fc98fa21dMD55falseAnonymousREAD2026-11-2810495/43809oai:bibliotecadigital.udea.edu.co:10495/438092025-03-26 19:50:08.521https://creativecommons.org/licenses/by-nc-sa/4.0/embargo2026-11-28https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
