Internal clustering validation method for ecosystem health identification using passive acoustic monitoring

ABSTRACT : One of the most challenging tasks in unsupervised algorithms is determining the number of clusters, for which Clustering Internal Validity Indices (CIVIs) have been developed. CIVIs are based on metrics such as compactness and separation to evaluate partitions and assist in the quest for...

Full description

Autores:
Rendon Hurtado, Nestor David
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/43809
Acceso en línea:
https://hdl.handle.net/10495/43809
Palabra clave:
Algoritmos (computadores)
Computer algorithms
Agrupamiento de términos
Terms clustering
Emisión acústica
Acoustic emission
Clustering validation indice
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_65dca403f74e612fa219642090aa01ea
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/43809
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
title Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
spellingShingle Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
Algoritmos (computadores)
Computer algorithms
Agrupamiento de términos
Terms clustering
Emisión acústica
Acoustic emission
Clustering validation indice
title_short Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
title_full Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
title_fullStr Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
title_full_unstemmed Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
title_sort Internal clustering validation method for ecosystem health identification using passive acoustic monitoring
dc.creator.fl_str_mv Rendon Hurtado, Nestor David
dc.contributor.advisor.none.fl_str_mv Isaza Narvaez, Claudia Victoria
dc.contributor.author.none.fl_str_mv Rendon Hurtado, Nestor David
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.lemb.none.fl_str_mv Algoritmos (computadores)
Computer algorithms
Agrupamiento de términos
Terms clustering
Emisión acústica
Acoustic emission
topic Algoritmos (computadores)
Computer algorithms
Agrupamiento de términos
Terms clustering
Emisión acústica
Acoustic emission
Clustering validation indice
dc.subject.proposal.spa.fl_str_mv Clustering validation indice
description ABSTRACT : One of the most challenging tasks in unsupervised algorithms is determining the number of clusters, for which Clustering Internal Validity Indices (CIVIs) have been developed. CIVIs are based on metrics such as compactness and separation to evaluate partitions and assist in the quest for the optimal number of clusters. Nevertheless, specialized CIVIs tailored for specific applications have been devised, and there exists no allencompassing CIVI applicable to all scenarios. One contemporary application where such an approach is employed is Passive Acoustic Monitoring (PAM), which employs soundscape data to comprehend community dynamics and complement landscape information. PAM utilizes acoustic variables, including acoustic indices—mathematical functions designed to elucidate various aspects of the complexity within sound recordings. Furthermore, although a relationship between the soundscape and landscape features has been established, there are currently no methodologies that allow for the interpretable integration of acoustic indices into unsupervised algorithms. This gap, in part, arises from the absence of CIVIs based on crisp uncertainty metrics, which is especially critical in decision-making processes like PAM, which often involve ambiguity, non-convex distributions, outliers, and data overlap. This document presents the proposal of a novel CIVI, Uncertainty Frechet (UF), capable of determining the optimal number of clusters for PAM applications. The UF index has also demonstrated proficiency across a multitude of benchmark databases and synthetic datasets. Additionally, the index was employed in two PAM methodologies: the first displayed remarkable performance in identifying ecosystem transformations in an unsupervised manner, tested within a tropical dry forest in Bolivar, Colombia. The second methodology aids in creating acoustic similarity maps, integrating acoustic index information to represent similarities among diferent acoustic patterns across a region. This methodology was tested in an ecosystem with various types of coverage, demonstrating a relationship between i the results and various ecological indicators. The results, both of the UF index and the methodologies, establish the UF index as a valuable tool for researchers and practitioners working for both PAM applications and highly uncertain data applications .
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-28T13:09:31Z
dc.date.available.none.fl_str_mv 2024-11-28T13:09:31Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/43809
url https://hdl.handle.net/10495/43809
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 117 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computación
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/7aadcd15-1122-4fa2-9310-37804a0b661d/download
https://bibliotecadigital.udea.edu.co/bitstreams/5e946127-2081-490b-8710-53315ca61e77/download
https://bibliotecadigital.udea.edu.co/bitstreams/775c17d7-9552-4ee8-afa2-092a80ef0280/download
https://bibliotecadigital.udea.edu.co/bitstreams/bcba6794-1126-43a9-9fae-487c9113f2bc/download
https://bibliotecadigital.udea.edu.co/bitstreams/5229c92d-191e-441e-bfda-e9d42806e381/download
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
ea59d753e3109e014d1d52a06b096fc0
8a4605be74aa9ea9d79846c1fba20a33
1196bad2c41211a072cba3f934e87a3f
2e208909a153b3fb5542e22fc98fa21d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052281078743040
spelling Isaza Narvaez, Claudia VictoriaRendon Hurtado, Nestor DavidSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2024-11-28T13:09:31Z2024-11-28T13:09:31Z2024https://hdl.handle.net/10495/43809ABSTRACT : One of the most challenging tasks in unsupervised algorithms is determining the number of clusters, for which Clustering Internal Validity Indices (CIVIs) have been developed. CIVIs are based on metrics such as compactness and separation to evaluate partitions and assist in the quest for the optimal number of clusters. Nevertheless, specialized CIVIs tailored for specific applications have been devised, and there exists no allencompassing CIVI applicable to all scenarios. One contemporary application where such an approach is employed is Passive Acoustic Monitoring (PAM), which employs soundscape data to comprehend community dynamics and complement landscape information. PAM utilizes acoustic variables, including acoustic indices—mathematical functions designed to elucidate various aspects of the complexity within sound recordings. Furthermore, although a relationship between the soundscape and landscape features has been established, there are currently no methodologies that allow for the interpretable integration of acoustic indices into unsupervised algorithms. This gap, in part, arises from the absence of CIVIs based on crisp uncertainty metrics, which is especially critical in decision-making processes like PAM, which often involve ambiguity, non-convex distributions, outliers, and data overlap. This document presents the proposal of a novel CIVI, Uncertainty Frechet (UF), capable of determining the optimal number of clusters for PAM applications. The UF index has also demonstrated proficiency across a multitude of benchmark databases and synthetic datasets. Additionally, the index was employed in two PAM methodologies: the first displayed remarkable performance in identifying ecosystem transformations in an unsupervised manner, tested within a tropical dry forest in Bolivar, Colombia. The second methodology aids in creating acoustic similarity maps, integrating acoustic index information to represent similarities among diferent acoustic patterns across a region. This methodology was tested in an ecosystem with various types of coverage, demonstrating a relationship between i the results and various ecological indicators. The results, both of the UF index and the methodologies, establish the UF index as a valuable tool for researchers and practitioners working for both PAM applications and highly uncertain data applications .COL0010717DoctoradoDoctor en Ingeniería Electrónica y Computación117 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computaciónhttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Internal clustering validation method for ecosystem health identification using passive acoustic monitoringTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftAlgoritmos (computadores)Computer algorithmsAgrupamiento de términosTerms clusteringEmisión acústicaAcoustic emissionClustering validation indicePublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/7aadcd15-1122-4fa2-9310-37804a0b661d/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADORIGINALRendonNestor_2024_InternalClusteringValidationRendonNestor_2024_InternalClusteringValidationTesis doctoralapplication/pdf64175142https://bibliotecadigital.udea.edu.co/bitstreams/5e946127-2081-490b-8710-53315ca61e77/downloadea59d753e3109e014d1d52a06b096fc0MD51trueAnonymousREAD2026-11-28LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/775c17d7-9552-4ee8-afa2-092a80ef0280/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTRendonNestor_2024_InternalClusteringValidation.txtRendonNestor_2024_InternalClusteringValidation.txtExtracted texttext/plain105964https://bibliotecadigital.udea.edu.co/bitstreams/bcba6794-1126-43a9-9fae-487c9113f2bc/download1196bad2c41211a072cba3f934e87a3fMD54falseAnonymousREAD2026-11-28THUMBNAILRendonNestor_2024_InternalClusteringValidation.jpgRendonNestor_2024_InternalClusteringValidation.jpgGenerated Thumbnailimage/jpeg6577https://bibliotecadigital.udea.edu.co/bitstreams/5229c92d-191e-441e-bfda-e9d42806e381/download2e208909a153b3fb5542e22fc98fa21dMD55falseAnonymousREAD2026-11-2810495/43809oai:bibliotecadigital.udea.edu.co:10495/438092025-03-26 19:50:08.521https://creativecommons.org/licenses/by-nc-sa/4.0/embargo2026-11-28https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=