Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue

La enfermedad del dengue representa un problema grave en la salud pública a nivel mundial, debido a la amplia distribución del vector, estrategia de control ineficientes, dificultad en el acceso y eficacia de vacunas y ausencia de antivirales aprobados. Los extractos naturales, especialmente aquello...

Full description

Autores:
Gaitán Veloza, Gustavo Andrés
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/47918
Acceso en línea:
https://hdl.handle.net/10495/47918
Palabra clave:
Residuos de café
Coffee waste
Virus del dengue
Dengue virus
Antivirales
Antiviral agents
Células U937
U937 Cells
Técnicas in vitro
In vitro techniques
Simulación por computador
Computer simulation
Coffea arabica
Serotipo
Serotypes
http://aims.fao.org/aos/agrovoc/c_1721
http://aims.fao.org/aos/agrovoc/c_32699
http://id.loc.gov/authorities/subjects/sh85027725
https://id.nlm.nih.gov/mesh/D003716
https://id.nlm.nih.gov/mesh/D000998
https://id.nlm.nih.gov/mesh/D020298
https://id.nlm.nih.gov/mesh/D066298
https://id.nlm.nih.gov/mesh/D003198
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_61ffc87081bb48af959662137b88c91d
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/47918
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue
title Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue
spellingShingle Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue
Residuos de café
Coffee waste
Virus del dengue
Dengue virus
Antivirales
Antiviral agents
Células U937
U937 Cells
Técnicas in vitro
In vitro techniques
Simulación por computador
Computer simulation
Coffea arabica
Serotipo
Serotypes
http://aims.fao.org/aos/agrovoc/c_1721
http://aims.fao.org/aos/agrovoc/c_32699
http://id.loc.gov/authorities/subjects/sh85027725
https://id.nlm.nih.gov/mesh/D003716
https://id.nlm.nih.gov/mesh/D000998
https://id.nlm.nih.gov/mesh/D020298
https://id.nlm.nih.gov/mesh/D066298
https://id.nlm.nih.gov/mesh/D003198
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
title_short Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue
title_full Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue
title_fullStr Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue
title_full_unstemmed Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue
title_sort Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue
dc.creator.fl_str_mv Gaitán Veloza, Gustavo Andrés
dc.contributor.advisor.none.fl_str_mv Martínez Gutiérrez, Marlén
Loaiza Cano, Vanessa
dc.contributor.author.none.fl_str_mv Gaitán Veloza, Gustavo Andrés
dc.contributor.referee.none.fl_str_mv Roja Hoyos, Luisa Fernanda
dc.contributor.researchgroup.none.fl_str_mv Grupo de Investigación en Ciencias Agrarias -GRICA-
Grupo de Investigación en Microbiología Básica y Aplicada-Microba
dc.contributor.jury.none.fl_str_mv Delgado Tiria, Félix Giovanni
Betancur Galvis, Liliana Amparo
dc.subject.lcsh.none.fl_str_mv Residuos de café
Coffee waste
topic Residuos de café
Coffee waste
Virus del dengue
Dengue virus
Antivirales
Antiviral agents
Células U937
U937 Cells
Técnicas in vitro
In vitro techniques
Simulación por computador
Computer simulation
Coffea arabica
Serotipo
Serotypes
http://aims.fao.org/aos/agrovoc/c_1721
http://aims.fao.org/aos/agrovoc/c_32699
http://id.loc.gov/authorities/subjects/sh85027725
https://id.nlm.nih.gov/mesh/D003716
https://id.nlm.nih.gov/mesh/D000998
https://id.nlm.nih.gov/mesh/D020298
https://id.nlm.nih.gov/mesh/D066298
https://id.nlm.nih.gov/mesh/D003198
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
dc.subject.decs.none.fl_str_mv Virus del dengue
Dengue virus
Antivirales
Antiviral agents
Células U937
U937 Cells
Técnicas in vitro
In vitro techniques
Simulación por computador
Computer simulation
dc.subject.agrovoc.none.fl_str_mv Coffea arabica
Serotipo
Serotypes
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_1721
http://aims.fao.org/aos/agrovoc/c_32699
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85027725
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D003716
https://id.nlm.nih.gov/mesh/D000998
https://id.nlm.nih.gov/mesh/D020298
https://id.nlm.nih.gov/mesh/D066298
https://id.nlm.nih.gov/mesh/D003198
dc.subject.ods.none.fl_str_mv ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
description La enfermedad del dengue representa un problema grave en la salud pública a nivel mundial, debido a la amplia distribución del vector, estrategia de control ineficientes, dificultad en el acceso y eficacia de vacunas y ausencia de antivirales aprobados. Los extractos naturales, especialmente aquellos provenientes de plantas, han sido de interés en el desarrollo de compuestos antivirales, por su prometedor potencial terapéutico. Actualmente, gracias al desarrollo de negocios sostenibles y la valorización de residuos agroindustriales, los residuos generados durante el beneficio del café, que generan un impacto ambiental desfavorable, podrían convertirse en extractos como fuente potencial de metabolitos secundarios clave como los ácidos clorogénicos, los cuales han mostrado actividad antioxidante y capacidad antiviral. Por esto, se evaluó el efecto antiviral in vitro e in silico de extractos hidroalcohólicos de cáscara de café de Coffea arabica contra cuatro serotipos del DENV. Se evaluó la viabilidad de células U937 (monocitos humanos derivados de linfoma) tratadas a concentraciones seriadas de 0.031 a 1.0% del extracto, para seleccionar la concentración de uso. Se evaluó la actividad antiviral por estrategia combinada, y el posible mecanismo por estrategias individuales pre, trans y postratamiento en células U937 infectadas con una cepa de cada serotipo de DENV (MOI: 0.5), tratándolas con una concentración no citotóxica del extracto. Se cuantificaron las UFP/mL mediante ensayo de plaqueo, el número de copias genómicas/mL por qPCR y la proteína viral por Cell-ELISA. Se identificaron los metabolitos del extracto por UHPLC-MS/Orbitrap y se evaluaron in silico por acoplamiento molecular con proteínas virales de DENV. Se observó que la viabilidad celular fue superior al 80% en todas las concentraciones del extracto evaluadas durante 72h de tratamiento y superior al 90% a 0.063%, concentración seleccionada para las evaluaciones antivirales; la estrategia combinada resultó en una inhibición de las partículas virales infecciosas de los cuatro serotipos, con disminuciones del 85.3% (DENV-1), 86.7% (DENV-2), 95.1% (DENV-3) y 39.6% (DENV-4); las estrategias individuales pre, trans y postratamiento, evidenciaron un efecto virucida contra DENV-2 con un 74,2% de inhibición, y actividad inhibitoria en el postratamiento para DENV-1, DENV-2 y DENV-3 del 42.4%, 31.1% y 38.3%, respectivamente. Adicionalmente, no se observó inhibición de copias genómicas/mL en los diferentes serotipos a excepción de DENV-3 con una reducción del 51.6%, y tampoco se redujo la producción de proteínas virales; lo que sugiere una interferencia en fases tardías del ciclo replicativo como ensamblaje, maduración o liberación viral en los serotipos 1 y 2. In silico, el ácido dicafeoilquínico mostró la mejor afinidad con las proteínas E y NS2B-NS3 de DENV-2, mientras que el ácido clorogénico destacó en NS5 de DENV-3. Los resultados obtenidos evidencian actividad antiviral del extracto de cáscara de café frente a los cuatro serotipos, con un posible mecanismo antiviral dependiente del serotipo, destacando el potencial del extracto de cáscara de café como fuente de compuestos bioactivos para el desarrollo de terapias alternativas contra la infección por DENV, no solo contribuyendo a proponer soluciones para el problema de salud pública, sino valorización un desecho de la cadena productiva del café.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-23T15:46:01Z
dc.date.issued.none.fl_str_mv 2025
dc.date.available.none.fl_str_mv 2027-10-23
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.citation.none.fl_str_mv Gaitán Veloza, G. A. (2025). Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/47918
identifier_str_mv Gaitán Veloza, G. A. (2025). Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.
url https://hdl.handle.net/10495/47918
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Halstead, S.B., Dengue. The lancet, 2007. 370(9599): p. 1644-1652.
Shukla, R., et al., Antibody-dependent enhancement: a challenge for developing a safe dengue vaccine. Frontiers in cellular and infection microbiology, 2020. 10: p. 572681.
McArthur, M.A., M.B. Sztein, and R. Edelman, Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert review of vaccines, 2013. 12(8): p. 933-953.
Dahmana, H. and O. Mediannikov, Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically. Pathogens, 2020. 9(4): p. 310.
Hassan, B.A.R. and A.H. Mohammed, Medicinal plants and infection. Journal of Innovations in Medical Research, 2023. 2(3): p. 9-11.
Saleh, M.S. and Y. Kamisah, Potential medicinal plants for the treatment of dengue fever and severe acute respiratory syndrome-coronavirus. Biomolecules, 2021. 11(1): p. 42.
Machado, M., et al., Bioactive potential and chemical composition of coffee by-products: from pulp to silverskin. Foods, 2023. 12(12): p. 2354.
Eckhardt, S., et al., Risk assessment of coffee cherry (cascara) fruit products for flour replacement and other alternative food uses. Molecules, 2022. 27(23): p. 8435.
Paz-Bailey, G., et al., Dengue. The Lancet, 2024. 403(10427): p. 667-682.
Sierra, B., et al., Multi-Tissue Transcriptomic-Informed In Silico Investigation of Drugs for the Treatment of Dengue Fever Disease. Viruses, 2021. 13(8): p. 1540.
Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-507.
Diamond, M.S. and T.C. Pierson, Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell, 2015. 162(3): p. 488-492.
Yamashita, A., et al., Origin and distribution of divergent dengue virus: novel database construction and phylogenetic analyses. Future Virology, 2013. 8(11): p. 1061-1083.
Arredondo-García, J., A. Méndez-Herrera, and H. Medina-Cortina, Arbovirus en latinoamérica. Acta pediátrica de México, 2016. 37(2): p. 111-131.
Barr, K.L., et al., Dengue serotypes 1–4 exhibit unique host specificity in vitro. Virus Adaptation and Treatment, 2012: p. 65-73.
Gutiérrez-Barbosa, H., N.Y. Castañeda, and J.E. Castellanos, Differential replicative fitness of the four dengue virus serotypes circulating in Colombia in human liver Huh7 cells. Brazilian Journal of Infectious Diseases, 2020. 24(1): p. 13-24.
Thepparit, C. and D.R. Smith, Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. Journal of virology, 2004. 78(22): p. 12647-12656.
Hidari, K.I. and T. Suzuki, Dengue virus receptor. Tropical medicine and health, 2011. 39(4SUPPLEMENT): p. S37-S43.
Soo, K.-M., et al., Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. PloS one, 2016. 11(5): p. e0154760.
Kuhn, R.J., et al., Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002. 108(5): p. 717-725.
Bell, S.M., L. Katzelnick, and T. Bedford, Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. Elife, 2019. 8: p. e42496.
Perera, R. and R.J. Kuhn, Structural proteomics of dengue virus. Current opinion in microbiology, 2008. 11(4): p. 369-377.
Bollati, M., et al., Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral research, 2010. 87(2): p. 125-148.
Cruz-Oliveira, C., et al., Receptors and routes of dengue virus entry into the host cells. FEMS microbiology reviews, 2015. 39(2): p. 155-170.
Kay, R.R., Macropinocytosis: Biology and mechanisms. Cells & development, 2021. 168: p. 203713.
Ghigo, E., A dilemma for viruses and giant viruses: which endocytic pathway to use to enter cells? Intervirology, 2010. 53(5): p. 274-283.
Scott, C.C., F. Vacca, and J. Gruenberg. Endosome maturation, transport and functions. in Seminars in Cell and Developmental Biology. 2014.
Heinz, F.X. and S.L. Allison, Flavivirus structure and membrane fusion. 2003.
Kumar, R., et al., Role of host-mediated post-translational modifications (PTMs) in RNA virus pathogenesis. International Journal of Molecular Sciences, 2020. 22(1): p. 323.
Clyde, K., J.L. Kyle, and E. Harris, Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. Journal of virology, 2006. 80(23): p. 11418-11431.
Zybert, I.A., et al., Functional importance of dengue virus maturation: infectious properties of immature virions. Journal of General Virology, 2008. 89(12): p. 3047-3051.
Stadler, K., et al., Proteolytic activation of tick-borne encephalitis virus by furin. Journal of virology, 1997. 71(11): p. 8475-8481.
Diosa-Toro, M., et al., Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virology Journal, 2020. 17: p. 1-14.
Leitmeyer, K.C., et al., Dengue virus structural differences that correlate with pathogenesis. Journal of virology, 1999. 73(6): p. 4738-4747.
Urcuqui-Inchima, S., et al., Recent developments in understanding dengue virus replication. Advances in virus research, 2010. 77: p. 1-39.
Modhiran, N., et al., Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science translational medicine, 2015. 7(304): p. 304ra142-304ra142.
Avirutnan, P., et al., Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. The Journal of infectious diseases, 2006. 193(8): p. 1078-1088.
Sun, D.S., et al., Antiplatelet autoantibodies elicited by dengue virus non‐structural protein 1 cause thrombocytopenia and mortality in mice. Journal of Thrombosis and Haemostasis, 2007. 5(11): p. 2291-2299.
Organization, W.H., et al., Dengue: guidelines for diagnosis, treatment, prevention and control. 2009: World Health Organization.
Frantchez, V., et al., Dengue en adultos: diagnóstico, tratamiento y abordaje de situaciones especiales. Revista Médica del Uruguay, 2016. 32(1): p. 43-51.
Htun, T.P., Z. Xiong, and J. Pang, Clinical signs and symptoms associated with WHO severe dengue classification: a systematic review and meta-analysis. Emerging microbes & infections, 2021. 10(1): p. 1116-1128.
da Silveira, L.T.C., B. Tura, and M. Santos, Systematic review of dengue vaccine efficacy. BMC infectious diseases, 2019. 19: p. 1-8.
Biswal, S., et al., Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. New England Journal of Medicine, 2019. 381(21): p. 2009-2019.
Lee, M.F., Y.S. Wu, and C.L. Poh, Molecular mechanisms of antiviral agents against dengue virus. Viruses, 2023. 15(3): p. 705.
Kausar, S., et al., A review: Mechanism of action of antiviral drugs. International journal of immunopathology and pharmacology, 2021. 35: p. 20587384211002621.
Boldescu, V., et al., Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nature Reviews Drug Discovery, 2017. 16(8): p. 565-586.
Troost, B. and J.M. Smit, Recent advances in antiviral drug development towards dengue virus. Current opinion in virology, 2020. 43: p. 9-21.
Wang, B., et al., Structural basis for STAT2 suppression by flavivirus NS5. Nature structural & molecular biology, 2020. 27(10): p. 875-885.
Zhao, Y., et al., A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS pathogens, 2015. 11(3): p. e1004682.
Mahajan, S., et al., Antiviral strategies targeting host factors and mechanisms obliging+ ssRNA viral pathogens. Bioorganic & Medicinal Chemistry, 2021. 46: p. 116356.
Lozach, P.-Y., et al., Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. Journal of Biological Chemistry, 2005. 280(25): p. 23698-23708.
Hilgard, P. and R. Stockert, Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology, 2000. 32(5): p. 1069-1077.
Chew, M.-F., K.-S. Poh, and C.-L. Poh, Peptides as therapeutic agents for dengue virus. International journal of medical sciences, 2017. 14(13): p. 1342.
Low, J.G., et al., Dengue antiviral development: a continuing journey. Dengue and Zika: Control and Antiviral Treatment Strategies, 2018: p. 319-332.
Botta, L., et al., Drug repurposing approaches to fight Dengue virus infection and related diseases. Front Biosci (Landmark Ed), 2018. 23(6): p. 997-1019.
Martina, B.E., P. Koraka, and A.D. Osterhaus, Dengue virus pathogenesis: an integrated view. Clinical microbiology reviews, 2009. 22(4): p. 564-581.
Zhu, J.-D., et al., Broad-spectrum antiviral agents. Frontiers in microbiology, 2015. 6: p. 517.
Tricou, V., et al., A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS neglected tropical diseases, 2010. 4(8): p. e785.
Low, J.G., E.E. Ooi, and S.G. Vasudevan, Current status of dengue therapeutics research and development. The Journal of infectious diseases, 2017. 215(suppl_2): p. S96-S102.
Tian, Y.-S., et al., Dengue virus and its inhibitors: a brief review. Chemical and Pharmaceutical Bulletin, 2018. 66(3): p. 191-206.
Jassim, S.A. and M.A. Naji, Novel antiviral agents: a medicinal plant perspective. Journal of applied microbiology, 2003. 95(3): p. 412-427.
Isah, T., Stress and defense responses in plant secondary metabolites production. Biological research, 2019. 52.
González Mera, I.F., D. González Falconí, and V. Morera Córdova, Secondary metabolites in plants: Main classes, phytochemical analysis and pharmacological activities. Bionatura, 2019. 4(4): p. 1000-1009.
García, A. and E. Carril, Pérez-Urria.(2009) Metabolismo secundario de plantas. Reduca (Biología). Serie Fisiología Vegetal. 2(3): p. 119-145.
Bribi, N., Pharmacological activity of alkaloids: a review. Asian J. Bot, 2018. 1(1): p. 1-6.
Kutchan, T.M., Alkaloid Biosynthesis [mdash] The Basis for Metabolic Engineering of Medicinal Plants. The plant cell, 1995. 7(7): p. 1059.
Gershenzon, J. and N. Dudareva, The function of terpene natural products in the natural world. Nature chemical biology, 2007. 3(7): p. 408-414.
Rodrıguez-Concepción, M. and A. Boronat, Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant physiology, 2002. 130(3): p. 1079-1089.
Rodríguez-Pérez, C., A. Segura-Carretero, and M. del Mar Contreras, Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Critical reviews in food science and nutrition, 2019. 59(8): p. 1212-1229.
Dai, J. and R.J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010. 15(10): p. 7313-7352.
Krylova, N., A. Popov, and G. Leonova, Antioxidants as Potential Antiviral Agents for Flavivirus Infections. Antibiotiki i Khimioterapiia= Antibiotics and Chemoterapy [sic], 2016. 61(5-6): p. 25-31.
Ghildiyal, R., et al., Phytochemicals as antiviral agents: recent updates. Plant-derived bioactives: production, properties and therapeutic applications, 2020: p. 279-295.
Loaiza-Cano, V., et al., Antiviral role of phenolic compounds against dengue virus: A review. Biomolecules, 2020. 11(1): p. 11.
Davis, A.P., et al., An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, 2006. 152(4): p. 465-512.
Roa, G., et al., Beneficio ecológico del café. 1999, Chinchiná, Cenicafé. p. 273.
Ramos, P., J. Sanz, and C. Oliveros, Identificación y clasificación de frutos de café en tiempo real a través de la medición de color. 2014.
Jiménez, E.R., Café I (G. Coffea). Reduca (Biologia). Serie Botánica, 2014. 7(2): p. 113-132.
Reguengo, L.M., et al., Agro-industrial by-products: Valuable sources of bioactive compounds. Food Research International, 2022. 152: p. 110871.
Rendón, J.C.M., C.F.A. Villalobos, and F.A.R. Ledesma, Mirada a los aspectos económicos, financieros, sociales y ambientales del cultivo del café en Colombia-2022. Documentos de Trabajo ECACEN, 2023(1): p. 144-161.
Huancas-Segura, A.F., V. Castro-Ramírez, and J.E. González-Díaz, Comportamiento de las Exportaciones de Café colombiano durante el periodo 2019-2023. Revista científica anfibios, 2024. 7(2): p. 36-46.
Mendoza, L.V. and C.G.-M. Aparicio, Impactos socioeconómicos de la producción de café en Colombia. Revista Científica de la UCSA, 2023. 10(2): p. 43-53.
Mendoza, L.V. and C.G.-M. Aparicio, Impactos socioeconómicos de la producción de café en Colombia. Revista Científica de la UCSA, 2023. 10(2).
Sanz, J., et al., Proceso de beneficio, in En Federación Nacional de Cafeteros de Colombia, Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura. 2013, Cenicafé. p. 09-47.
Ballesteros, L.F., J.A. Teixeira, and S.I. Mussatto, Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and bioprocess technology, 2014. 7: p. 3493-3503.
Janissen, B. and T. Huynh, Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and recycling, 2018. 128: p. 110-117.
Yashin, A., et al., Antioxidant and antiradical activity of coffee. Antioxidants, 2013. 2(4): p. 230-245.
Liang, N. and D.D. Kitts, Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules, 2014. 19(11): p. 19180-19208.
Motohashi, H. and M. Yamamoto, Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in molecular medicine, 2004. 10(11): p. 549-557.
Silva, C.S., et al., Coffee industrial waste as a natural source of bioactive compounds with antibacterial and antifungal activities. The battle against microbial pathogens: Basic science, technological advances and educational programs, 2015: p. 131-136.
Castro-Díaz, R., et al., The Antimicrobial Effects of Coffee and By-Products and Their Potential Applications in Healthcare and Agricultural Sectors: A State-of-Art Review. Microorganisms, 2025. 13(2): p. 215.
Rebollo-Hernanz, M., et al., Revalorization of coffee husk: Modeling and optimizing the green sustainable extraction of phenolic compounds. Foods, 2021. 10(3): p. 653.
Utsunomiya, H., et al., Antiviral activities of coffee extracts in vitro. Food and Chemical Toxicology, 2008. 46(6): p. 1919-1924.
Utsunomiya, H., et al., Inhibition by caffeic acid of the influenza A virus multiplication in vitro. International journal of molecular medicine, 2014. 34(4): p. 1020-1024.
Wang, G.-F., et al., Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral research, 2009. 83(2): p. 186-190.
Wu, C.-S., et al., Coffee as a dietary strategy to prevent SARS-CoV-2 infection. Cell & Bioscience, 2023. 13(1): p. 210.
Sinisi, V., et al., Chlorogenic compounds from coffee beans exert activity against respiratory viruses. Planta Medica, 2017. 83(07): p. 615-623.
Tang, L.I., et al., Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC complementary and alternative medicine, 2012. 12: p. 1-10.
Rosmalena, R., et al., The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens, 2019. 8(2): p. 85.
Parida, M., et al., Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. Journal of ethnopharmacology, 2002. 79(2): p. 273-278.
Silva, A., et al., Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2011. 17: p. 406-413.
Hernández-Castro, C., F. Diaz-Castillo, and M. Martínez-Gutierrez, Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2. Asian Pacific Journal of Tropical Disease, 2015. 5(2): p. 98-106.
Jiménez-Posada, E.V., S. Robledo, and M. Martínez-Gutiérrez, Actividad antiviral in vitro frente a arbovirus de extractos metanólicos obtenidos de plantas nativas de la región cafetera pertenecientes a la familia Solanaceae. Iatreia, 2022. 35(1-S): p. S33-S34.
Gómez-Calderón, C., et al., Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC complementary and alternative medicine, 2017. 17: p. 1-12.
Monsalve-Escudero, L.M., et al., The antiviral and virucidal activities of voacangine and structural analogs extracted from Tabernaemontana cymosa depend on the Dengue virus strain. Plants, 2021. 10(7): p. 1280.
Trujillo-Correa, A.I., et al., In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC complementary and alternative medicine, 2019. 19: p. 1-16.
Muñoz-Jordán, J.L., et al., Inhibition of interferon signaling by dengue virus. Proceedings of the National Academy of Sciences, 2003. 100(24): p. 14333-14338.
Chuang, Y.-C., H.-R. Chen, and T.-M. Yeh, Pathogenic roles of macrophage migration inhibitory factor during dengue virus infection. Mediators of inflammation, 2015. 2015(1): p. 547094.
Schmid, M.A., M.S. Diamond, and E. Harris, Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Frontiers in immunology, 2014. 5: p. 647.
Halstead, S. and P. Simasthien, Observations related to the pathogenesis of dengue hemorrhagic fever. II. Antigenic and biologic properties of dengue viruses and their association with disease response in the host. The Yale journal of biology and medicine, 1970. 42(5): p. 276.
Reyes-del Valle, J., et al., Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. Journal of virology, 2005. 79(8): p. 4557-4567.
Kyle, J.L., P.R. Beatty, and E. Harris, Dengue virus infects macrophages and dendritic cells in a mouse model of infection. The Journal of infectious diseases, 2007. 195(12): p. 1808-1817.
Stöckbauer, P., et al., Differentiation of human myeloid leukemia cell lines induced by tumor-promoting phorbol ester (TPA). I. Changes of the morphology, cytochemistry and the surface differentiation antigens analyzed with monoclonal antibodies. Neoplasma, 1983. 30(3): p. 257-272.
Martínez-Gutierrez, M., J.E. Castellanos, and J.C. Gallego-Gómez, Statins reduce dengue virus production via decreased virion assembly. Intervirology, 2011. 54(4): p. 202-216.
Monsalve Escudero, L.M., Actividad antiviral in vitro e interacciones In silico de alcaloides indólicos aislados de Tabernaemontana cymosa frente a la infección por los virus Zika, Chikungunya y Dengue. 2019.
Zapata Cardona, M.I., Actividad antiviral in vitro e in silico de compuestos isoprenoides contra los virus Dengue, Chikungunya y Zika. 2020.
Loaiza-Cano, V., et al., In vitro and in silico anti-Arboviral activities of Dihalogenated phenolic Derivaties of L-tyrosine. Molecules, 2021. 26(11): p. 3430.
Ocampo-López, O.L. and L.M. Alvarez-Herrera, Tendencia de la producción y el consumo del café en Colombia. Apuntes del CENES, 2017. 36(64): p. 139-165.
Murthy, P.S. and M.M. Naidu, Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and recycling, 2012. 66: p. 45-58.
Weiland, S., et al., The 2030 agenda for sustainable development: transformative change through the sustainable development goals? Politics and Governance, 2021. 9(1): p. 90-95.
Gil-Gómez, J.A., L.M. Florez-Pardo, and Y.C. Leguizamón-Vargas, Valorization of coffee by-products in the industry, a vision towards circular economy. Discover Applied Sciences, 2024. 6(9): p. 480.
Rodríguez-Morales, A.J., et al., The Epidemiological Impact of Dengue in Colombia: A Systematic Review. The American Journal of Tropical Medicine and Hygiene, 2024. 112(1): p. 182.
Instituto Nacional de Salud (INS), Boletín Epidemiológico Semanal: semana 52 de 2022. 2022, Ministerio de Salud de Colombia: Bogotá.
Instituto Nacional de Salud (INS), Boletín Epidemiológico Semanal: semana 52 de 2023. 2023, Ministerio de Salud de Colombia: Bogotá.
Instituto Nacional de Salud (INS), Boletín Epidemiológico Semanal: semana 52 de 2024. 2024, Ministerio de Salud de Colombia: Bogotá.
Instituto Nacional de Salud (INS), Boletín Epidemiológico Semanal: semana 17 de 2025. 2025, Ministerio de Salud de Colombia: Bogotá.
Parker, W.B., Metabolism and antiviral activity of ribavirin. Virus research, 2005. 107(2): p. 165-171.
Low, Z.X., et al., Antiviral activity of silymarin and baicalein against dengue virus. Scientific Reports, 2021. 11(1): p. 21221.
Rothan, H.A., et al., Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC infectious diseases, 2012. 12: p. 1-9.
Wei, Z.-X., T.-T. Tang, and S.-P. Jiang, The antiviral mechanisms, effects, safety and adverse effects of chloroquine. European Review for Medical & Pharmacological Sciences, 2020. 24(12).
Horton, L., et al., Spectrum of virucidal activity from ultraviolet to infrared radiation. Photochemical & Photobiological Sciences, 2020. 19: p. 1262-1270.
Matrosovich, M., et al., New low-viscosity overlay medium for viral plaque assays. Virology journal, 2006. 3: p. 1-7.
Chien, L.-J., et al., Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. Journal of clinical microbiology, 2006. 44(4): p. 1295-1304.
Tambunan, U.S.F., et al., Computational design of disulfide cyclic peptide as potential inhibitor of complex NS2B-NS3 dengue virus protease. African Journal of Biotechnology, 2011. 10(57): p. 12281-12290.
Yap, T.L., et al., Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. Journal of virology, 2007. 81(9): p. 4753-4765.
Echeverria, M. and M. Nuti, Valorisation of the residues of coffee agro-industry: perspectives and limitations. Open Waste Manag. J, 2017. 10(1): p. 13-22.
Fernandes, A., et al., Impacts of discarded coffee waste on human and environmental health. Ecotoxicology and environmental safety, 2017. 141: p. 30-36.
Lee, Y.-G., et al., Value-added products from coffee waste: a review. Molecules, 2023. 28(8): p. 3562.
Silva, M.d.O., et al., Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) using different extraction methods. Molecules, 2020. 26(1): p. 46.
Torres-Valenzuela, L.S., J.A. Serna-Jiménez, and K. Martínez, Coffee by-products: Nowadays and perspectives. Coffee—Production and Research, 2020: p. 1-18.
Martínez-Betancur, V. and M. Martínez-Gutierrez, Proteomic profile of human monocytic cells infected with dengue virus. Asian Pacific Journal of Tropical Biomedicine, 2016. 6(11): p. 914-923.
Raheel, U., M. Jamal, and N.U.S.S. Zaidi, A molecular approach designed to limit the replication of mature DENV2 in host cells. Viral Immunology, 2015. 28(7): p. 378-384.
Puerta-Guardo, H., et al., The 1α, 25-dihydroxy-vitamin D3 reduces dengue virus infection in human myelomonocyte (U937) and hepatic (Huh-7) cell lines and cytokine production in the infected monocytes. Antiviral research, 2012. 94(1): p. 57-61.
Farias, K.J.S., et al., Chloroquine interferes with dengue‐2 virus replication in U937 cells. Microbiology and immunology, 2014. 58(6): p. 318-326.
Angeloni, S., et al., Antioxidant and Anti‐Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2021. 2021(1): p. 6620913.
Iriondo-DeHond, A., et al., Validation of coffee by-products as novel food ingredients. Innovative Food Science & Emerging Technologies, 2019. 51: p. 194-204.
Zeng, K., et al., Synthesis and biological evaluation of quinic acid derivatives as anti-inflammatory agents. Bioorganic & medicinal chemistry letters, 2009. 19(18): p. 5458-5460.
Schiller, L., et al., Bioactive plant compounds in coffee charcoal (Coffeae carbo) extract inhibit cytokine release from activated human THP-1 macrophages. Molecules, 2019. 24(23): p. 4263.
Nascimento, C.R., et al., Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies. Biochemistry and Biophysics Reports, 2022. 32: p. 101383.
Song, M.-g., et al., NRF2 signaling negatively regulates phorbol-12-myristate-13-acetate (PMA)-induced differentiation of human monocytic U937 cells into pro-inflammatory macrophages. PLoS One, 2015. 10(7): p. e0134235.
Ding, Y., et al., Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Scientific reports, 2017. 7(1): p. 45723.
Joseph, B., et al., In vitro study on cytotoxic effect and anti-DENV2 activity of Carica papaya L. leaf. Frontiers in Life Science, 2015. 8(1): p. 18-22.
Zanello, P.R., et al., Quinic acid derivatives inhibit dengue virus replication in vitro. Virology journal, 2015. 12: p. 1-13.
Dwivedi, V.D., et al., Genomics, proteomics and evolution of dengue virus. Briefings in functional genomics, 2017. 16(4): p. 217-227.
Goo, L., et al., A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS pathogens, 2017. 13(2): p. e1006178.
Cockburn, J.J., et al., Mechanism of dengue virus broad cross-neutralization by a monoclonal antibody. Structure, 2012. 20(2): p. 303-314.
Flores-Ocelotl, M.R., et al., Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC complementary and alternative medicine, 2018. 18: p. 1-10.
Zandi, K., et al., Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology journal, 2011. 8: p. 1-11.
Kok, B.H., et al., Dengue virus infection–a review of pathogenesis, vaccines, diagnosis and therapy. Virus research, 2023. 324: p. 199018.
Madushanka, A., et al., Papaya leaf extracts as potential dengue treatment: an in-silico study. International journal of molecular sciences, 2022. 23(20): p. 12310.
Dhoju, N. and T.R. Lamichhane, Inhibitory Activity of Myricetin and Chlorogenic Acid against Dengue Virus NS2b/NS3 Protease through In Silico Approaches. Journal of Institute of Science and Technology, 2024. 29(2): p. 85-98.
Pan, A., et al., Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Biological Crystallography, 2017. 73(5): p. 402-419.
Senthilvel, P., et al., Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation, 2013. 9(18): p. 889.
de Sousa, L.R.F., et al., Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorganic & medicinal chemistry, 2015. 23(3): p. 466-470.
Iempridee, T., et al., A comparative biochemical analysis of the NS2B (H)–NS3pro protease complex from four dengue virus serotypes. Biochimica et Biophysica Acta (BBA)-General Subjects, 2008. 1780(7-8): p. 989-994.
Kim, Y.M., et al., NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. Journal of Biological Chemistry, 2013. 288(18): p. 12891-12900.
Wahaab, A., et al., Potential role of flavivirus NS2B-NS3 proteases in viral pathogenesis and antiflavivirus drug discovery employing animal cells and models: a review. Viruses, 2021. 14(1): p. 44.
Nitsche, C., et al., Peptide–boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. Journal of medicinal chemistry, 2017. 60(1): p. 511-516.
Hitakarun, A., et al., Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, Zika virus and chikungunya virus. Scientific reports, 2020. 10(1): p. 1499.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 64 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Maestría en Microbiología
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Escuela de Microbiología
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/0739b7d8-a81d-4ec9-84ef-3bb8041b556b/download
https://bibliotecadigital.udea.edu.co/bitstreams/acfe676f-ec65-4327-8fec-a63af672371e/download
https://bibliotecadigital.udea.edu.co/bitstreams/76b20f58-472c-40c7-afcc-09f72985330c/download
https://bibliotecadigital.udea.edu.co/bitstreams/8a4f67c6-11bb-4a85-a5cc-740f28b44abc/download
https://bibliotecadigital.udea.edu.co/bitstreams/63614b8f-5dd3-498a-a6c2-94146578a0d8/download
bitstream.checksum.fl_str_mv 20e08939828f8e554618d2fa0f7e7209
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
8662b5cfa10de7f5c4bb5fdb3de28b0b
031c092cf933ab7fc5f623299fbb22f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052182150840320
spelling Martínez Gutiérrez, MarlénLoaiza Cano, VanessaGaitán Veloza, Gustavo AndrésRoja Hoyos, Luisa FernandaGrupo de Investigación en Ciencias Agrarias -GRICA-Grupo de Investigación en Microbiología Básica y Aplicada-MicrobaDelgado Tiria, Félix GiovanniBetancur Galvis, Liliana Amparo2025-10-23T15:46:01Z2027-10-232025Gaitán Veloza, G. A. (2025). Efecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengue [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/47918La enfermedad del dengue representa un problema grave en la salud pública a nivel mundial, debido a la amplia distribución del vector, estrategia de control ineficientes, dificultad en el acceso y eficacia de vacunas y ausencia de antivirales aprobados. Los extractos naturales, especialmente aquellos provenientes de plantas, han sido de interés en el desarrollo de compuestos antivirales, por su prometedor potencial terapéutico. Actualmente, gracias al desarrollo de negocios sostenibles y la valorización de residuos agroindustriales, los residuos generados durante el beneficio del café, que generan un impacto ambiental desfavorable, podrían convertirse en extractos como fuente potencial de metabolitos secundarios clave como los ácidos clorogénicos, los cuales han mostrado actividad antioxidante y capacidad antiviral. Por esto, se evaluó el efecto antiviral in vitro e in silico de extractos hidroalcohólicos de cáscara de café de Coffea arabica contra cuatro serotipos del DENV. Se evaluó la viabilidad de células U937 (monocitos humanos derivados de linfoma) tratadas a concentraciones seriadas de 0.031 a 1.0% del extracto, para seleccionar la concentración de uso. Se evaluó la actividad antiviral por estrategia combinada, y el posible mecanismo por estrategias individuales pre, trans y postratamiento en células U937 infectadas con una cepa de cada serotipo de DENV (MOI: 0.5), tratándolas con una concentración no citotóxica del extracto. Se cuantificaron las UFP/mL mediante ensayo de plaqueo, el número de copias genómicas/mL por qPCR y la proteína viral por Cell-ELISA. Se identificaron los metabolitos del extracto por UHPLC-MS/Orbitrap y se evaluaron in silico por acoplamiento molecular con proteínas virales de DENV. Se observó que la viabilidad celular fue superior al 80% en todas las concentraciones del extracto evaluadas durante 72h de tratamiento y superior al 90% a 0.063%, concentración seleccionada para las evaluaciones antivirales; la estrategia combinada resultó en una inhibición de las partículas virales infecciosas de los cuatro serotipos, con disminuciones del 85.3% (DENV-1), 86.7% (DENV-2), 95.1% (DENV-3) y 39.6% (DENV-4); las estrategias individuales pre, trans y postratamiento, evidenciaron un efecto virucida contra DENV-2 con un 74,2% de inhibición, y actividad inhibitoria en el postratamiento para DENV-1, DENV-2 y DENV-3 del 42.4%, 31.1% y 38.3%, respectivamente. Adicionalmente, no se observó inhibición de copias genómicas/mL en los diferentes serotipos a excepción de DENV-3 con una reducción del 51.6%, y tampoco se redujo la producción de proteínas virales; lo que sugiere una interferencia en fases tardías del ciclo replicativo como ensamblaje, maduración o liberación viral en los serotipos 1 y 2. In silico, el ácido dicafeoilquínico mostró la mejor afinidad con las proteínas E y NS2B-NS3 de DENV-2, mientras que el ácido clorogénico destacó en NS5 de DENV-3. Los resultados obtenidos evidencian actividad antiviral del extracto de cáscara de café frente a los cuatro serotipos, con un posible mecanismo antiviral dependiente del serotipo, destacando el potencial del extracto de cáscara de café como fuente de compuestos bioactivos para el desarrollo de terapias alternativas contra la infección por DENV, no solo contribuyendo a proponer soluciones para el problema de salud pública, sino valorización un desecho de la cadena productiva del café.Dengue fever is a major global public health problem due to the widespread distribution of its vector, inefficient control strategies, limited vaccine access, and the lack of effective antiviral treatments. Natural extracts, particularly those derived from plants, have gained interest in antiviral drug development due to their promising therapeutic potential. Coffee by-products, which normally generate a negative environmental impact, contain secondary metabolites with bioactive and antiviral properties. For this reason, the in vitro and in silico antiviral effect of Coffea arabica husk extracts against all four DENV serotypes was evaluated. The viability of U937 (human monocytes derived from lymphoma) cells treated with serial extract concentrations %v/v (1.0 to 0.031%) was assessed. Antiviral strategies combined, pre, trans, and post-treatment were performed on U937 cells infected with each DENV serotype (MOI: 0.5) using a non-cytotoxic extract concentration (0.063%). Viral particles (PFU/mL) were quantified via plaque assays, while genomic copies and viral proteins were measured via qPCR and Cell-ELISA, respectively. Results showed cell viability remained above 80% at all extract concentrations after 72 hours of treatment. The combined strategy significantly inhibited infectious viral particles across all serotypes, with reductions of 85.3% (DENV-1), 86.7% (DENV-2), 95.1% (DENV-3), and 39.6% (DENV-4). Individual strategies revealed a virucidal effect against DENV-2 (74.2% inhibition) and post-treatment activity against DENV-1 (42.4%), DENV-2 (31.1%), and DENV-3 (38.3%). Additionally, no significant reduction in genomic copies was observed except for DENV-3 (51.6% decrease), demonstrating inhibition in genomic replication in that serotype, no reduction in viral protein production was observed in any of the four serotypes; suggesting interference in late phases of the replicative cycle such as viral assembly, maturation or release in serotypes 1 and 2. In silico, dicaffeoylquinic acid showed the best affinity with DENV-2 E and NS2B-NS3 proteins, while chlorogenic acid was preferred by DENV-3 NS5. In conclusion, the coffee husk extract exhibits serotype-dependent antiviral activity, highlighting its potential as a source of bioactive compounds for alternative dengue therapies. This research not only contributes to public health but also adds value to a waste product from the coffee production chain.1 MARCO TEÓRICO 1.1 VIRUS DEL DENGUE (DENV) 1.1.1 Epidemiología 1.1.2 Agente etiológico 1.1.3 Ciclo replicativo 1.1.4 Patogénesis 1.1.5 Manifestaciones clínicas 1.1.6 Estrategias de control 1.2 ANTIVIRALES 1.2.1 Mecanismos de acción 1.2.2 Búsqueda de antivirales 1.2.3 Plantas como fuente para el desarrollo de antivirales 1.3 PLANTA DE INTERÉS EN ESTE ESTUDIO Coffea arabica L. 1.3.1 Taxonomía 1.3.2 Importancia socioeconómica del café 1.3.3 Proceso de beneficiado húmedo del café 1.3.4 Potencial bioactivo 2 ANTECEDENTES 2.1 Actividad antiviral de extractos derivados del café 2.2 Extractos de origen natural con potencial antiviral contra el DENV 2.3 Antecedentes del grupo de investigación 3 PLANTEAMIENTO DEL PROBLEMA 4 PREGUNTA DE INVESTIGACIÓN 5 OBJETIVOS 5.1 Objetivo General 5.2 Objetivos específicos 6 METODOLOGÍA 6.1 Extracto de cáscara de café 6.2 Células 6.3 Cepas virales 6.3.1 Producciones virales 6.4 Ensayo de citotoxicidad por MTT 6.5 Estrategias para las evaluaciones antivirales in vitro 6.5.1 Estrategia antiviral combinada 6.5.2 Estrategia Pre-tratamiento 6.5.3 Estrategia Trans-tratamiento 6.5.4 Estrategia Post-tratamiento 6.6 Cuantificación viral 6.6.1 Cuantificación de partículas virales infecciosas: Ensayos de plaqueo 6.6.2 Cuantificación de genoma viral: Extracción de ARN viral y PCR en tiempo real 6.6.3 Cuantificación de las proteínas virales: Cell-ELISA 6.6.4 Análisis estadístico 6.7 Evaluación in silico de la afinidad de los compuestos presentes en el extracto de cáscara de café con proteínas virales aplicando acoplamiento molecular 7 RESULTADOS 7.1 El extracto de cáscara de café no afecta la viabilidad de las células U937 7.2 El extracto de cáscara de café presenta actividad antiviral contra los cuatro serotipos del DENV en una estrategia combinada 7.3 El extracto de cáscara de café actúa en etapas tardías del ciclo viral de DENV-1 7.4 El extracto de cáscara de café posee efecto virucida y actúa en etapas tardías del ciclo viral de DENV-2 7.5 El extracto de cáscara de café actúa en etapas tardías del ciclo viral de DENV-3 7.6 El extracto de cáscara de café no actúa en estrategias individuales pre, trans y post tratamiento contra DENV-4 7.7 Cuantificación de copias genómicas de monocapas de la estrategia antiviral Post tratamiento de DENV-1, DENV-2, DENV-3 y DENV-4 7.8 Cuantificación de proteínas de monocapas de la estrategia antiviral Post-tratamiento de DENV-1, DENV-2, DENV-3 y DENV-4 7.9 Los compuestos presentes en el extracto de cáscara de café presentan interacciones favorables con proteínas del DENV 8 DISCUSIÓN 9 CONCLUSIÓN 10 PERSPECTIVAS 11 BIBLIOGRAFÍAAntiviralesCOL0009556COL0126131MaestríaMagíster en Microbiología64 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en MicrobiologíaMedellín, ColombiaEscuela de MicrobiologíaCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Residuos de caféCoffee wasteVirus del dengueDengue virusAntiviralesAntiviral agentsCélulas U937U937 CellsTécnicas in vitroIn vitro techniquesSimulación por computadorComputer simulationCoffea arabicaSerotipoSerotypeshttp://aims.fao.org/aos/agrovoc/c_1721http://aims.fao.org/aos/agrovoc/c_32699http://id.loc.gov/authorities/subjects/sh85027725https://id.nlm.nih.gov/mesh/D003716https://id.nlm.nih.gov/mesh/D000998https://id.nlm.nih.gov/mesh/D020298https://id.nlm.nih.gov/mesh/D066298https://id.nlm.nih.gov/mesh/D003198ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sosteniblesEfecto antiviral in vitro e in silico de extractos derivados de café en un modelo de infección por el virus del dengueTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftHalstead, S.B., Dengue. The lancet, 2007. 370(9599): p. 1644-1652.Shukla, R., et al., Antibody-dependent enhancement: a challenge for developing a safe dengue vaccine. Frontiers in cellular and infection microbiology, 2020. 10: p. 572681.McArthur, M.A., M.B. Sztein, and R. Edelman, Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert review of vaccines, 2013. 12(8): p. 933-953.Dahmana, H. and O. Mediannikov, Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically. Pathogens, 2020. 9(4): p. 310.Hassan, B.A.R. and A.H. Mohammed, Medicinal plants and infection. Journal of Innovations in Medical Research, 2023. 2(3): p. 9-11.Saleh, M.S. and Y. Kamisah, Potential medicinal plants for the treatment of dengue fever and severe acute respiratory syndrome-coronavirus. Biomolecules, 2021. 11(1): p. 42.Machado, M., et al., Bioactive potential and chemical composition of coffee by-products: from pulp to silverskin. Foods, 2023. 12(12): p. 2354.Eckhardt, S., et al., Risk assessment of coffee cherry (cascara) fruit products for flour replacement and other alternative food uses. Molecules, 2022. 27(23): p. 8435.Paz-Bailey, G., et al., Dengue. The Lancet, 2024. 403(10427): p. 667-682.Sierra, B., et al., Multi-Tissue Transcriptomic-Informed In Silico Investigation of Drugs for the Treatment of Dengue Fever Disease. Viruses, 2021. 13(8): p. 1540.Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-507.Diamond, M.S. and T.C. Pierson, Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell, 2015. 162(3): p. 488-492.Yamashita, A., et al., Origin and distribution of divergent dengue virus: novel database construction and phylogenetic analyses. Future Virology, 2013. 8(11): p. 1061-1083.Arredondo-García, J., A. Méndez-Herrera, and H. Medina-Cortina, Arbovirus en latinoamérica. Acta pediátrica de México, 2016. 37(2): p. 111-131.Barr, K.L., et al., Dengue serotypes 1–4 exhibit unique host specificity in vitro. Virus Adaptation and Treatment, 2012: p. 65-73.Gutiérrez-Barbosa, H., N.Y. Castañeda, and J.E. Castellanos, Differential replicative fitness of the four dengue virus serotypes circulating in Colombia in human liver Huh7 cells. Brazilian Journal of Infectious Diseases, 2020. 24(1): p. 13-24.Thepparit, C. and D.R. Smith, Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. Journal of virology, 2004. 78(22): p. 12647-12656.Hidari, K.I. and T. Suzuki, Dengue virus receptor. Tropical medicine and health, 2011. 39(4SUPPLEMENT): p. S37-S43.Soo, K.-M., et al., Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. PloS one, 2016. 11(5): p. e0154760.Kuhn, R.J., et al., Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002. 108(5): p. 717-725.Bell, S.M., L. Katzelnick, and T. Bedford, Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. Elife, 2019. 8: p. e42496.Perera, R. and R.J. Kuhn, Structural proteomics of dengue virus. Current opinion in microbiology, 2008. 11(4): p. 369-377.Bollati, M., et al., Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral research, 2010. 87(2): p. 125-148.Cruz-Oliveira, C., et al., Receptors and routes of dengue virus entry into the host cells. FEMS microbiology reviews, 2015. 39(2): p. 155-170.Kay, R.R., Macropinocytosis: Biology and mechanisms. Cells & development, 2021. 168: p. 203713.Ghigo, E., A dilemma for viruses and giant viruses: which endocytic pathway to use to enter cells? Intervirology, 2010. 53(5): p. 274-283.Scott, C.C., F. Vacca, and J. Gruenberg. Endosome maturation, transport and functions. in Seminars in Cell and Developmental Biology. 2014.Heinz, F.X. and S.L. Allison, Flavivirus structure and membrane fusion. 2003.Kumar, R., et al., Role of host-mediated post-translational modifications (PTMs) in RNA virus pathogenesis. International Journal of Molecular Sciences, 2020. 22(1): p. 323.Clyde, K., J.L. Kyle, and E. Harris, Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. Journal of virology, 2006. 80(23): p. 11418-11431.Zybert, I.A., et al., Functional importance of dengue virus maturation: infectious properties of immature virions. Journal of General Virology, 2008. 89(12): p. 3047-3051.Stadler, K., et al., Proteolytic activation of tick-borne encephalitis virus by furin. Journal of virology, 1997. 71(11): p. 8475-8481.Diosa-Toro, M., et al., Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virology Journal, 2020. 17: p. 1-14.Leitmeyer, K.C., et al., Dengue virus structural differences that correlate with pathogenesis. Journal of virology, 1999. 73(6): p. 4738-4747.Urcuqui-Inchima, S., et al., Recent developments in understanding dengue virus replication. Advances in virus research, 2010. 77: p. 1-39.Modhiran, N., et al., Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science translational medicine, 2015. 7(304): p. 304ra142-304ra142.Avirutnan, P., et al., Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. The Journal of infectious diseases, 2006. 193(8): p. 1078-1088.Sun, D.S., et al., Antiplatelet autoantibodies elicited by dengue virus non‐structural protein 1 cause thrombocytopenia and mortality in mice. Journal of Thrombosis and Haemostasis, 2007. 5(11): p. 2291-2299.Organization, W.H., et al., Dengue: guidelines for diagnosis, treatment, prevention and control. 2009: World Health Organization.Frantchez, V., et al., Dengue en adultos: diagnóstico, tratamiento y abordaje de situaciones especiales. Revista Médica del Uruguay, 2016. 32(1): p. 43-51.Htun, T.P., Z. Xiong, and J. Pang, Clinical signs and symptoms associated with WHO severe dengue classification: a systematic review and meta-analysis. Emerging microbes & infections, 2021. 10(1): p. 1116-1128.da Silveira, L.T.C., B. Tura, and M. Santos, Systematic review of dengue vaccine efficacy. BMC infectious diseases, 2019. 19: p. 1-8.Biswal, S., et al., Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. New England Journal of Medicine, 2019. 381(21): p. 2009-2019.Lee, M.F., Y.S. Wu, and C.L. Poh, Molecular mechanisms of antiviral agents against dengue virus. Viruses, 2023. 15(3): p. 705.Kausar, S., et al., A review: Mechanism of action of antiviral drugs. International journal of immunopathology and pharmacology, 2021. 35: p. 20587384211002621.Boldescu, V., et al., Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nature Reviews Drug Discovery, 2017. 16(8): p. 565-586.Troost, B. and J.M. Smit, Recent advances in antiviral drug development towards dengue virus. Current opinion in virology, 2020. 43: p. 9-21.Wang, B., et al., Structural basis for STAT2 suppression by flavivirus NS5. Nature structural & molecular biology, 2020. 27(10): p. 875-885.Zhao, Y., et al., A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS pathogens, 2015. 11(3): p. e1004682.Mahajan, S., et al., Antiviral strategies targeting host factors and mechanisms obliging+ ssRNA viral pathogens. Bioorganic & Medicinal Chemistry, 2021. 46: p. 116356.Lozach, P.-Y., et al., Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. Journal of Biological Chemistry, 2005. 280(25): p. 23698-23708.Hilgard, P. and R. Stockert, Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology, 2000. 32(5): p. 1069-1077.Chew, M.-F., K.-S. Poh, and C.-L. Poh, Peptides as therapeutic agents for dengue virus. International journal of medical sciences, 2017. 14(13): p. 1342.Low, J.G., et al., Dengue antiviral development: a continuing journey. Dengue and Zika: Control and Antiviral Treatment Strategies, 2018: p. 319-332.Botta, L., et al., Drug repurposing approaches to fight Dengue virus infection and related diseases. Front Biosci (Landmark Ed), 2018. 23(6): p. 997-1019.Martina, B.E., P. Koraka, and A.D. Osterhaus, Dengue virus pathogenesis: an integrated view. Clinical microbiology reviews, 2009. 22(4): p. 564-581.Zhu, J.-D., et al., Broad-spectrum antiviral agents. Frontiers in microbiology, 2015. 6: p. 517.Tricou, V., et al., A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS neglected tropical diseases, 2010. 4(8): p. e785.Low, J.G., E.E. Ooi, and S.G. Vasudevan, Current status of dengue therapeutics research and development. The Journal of infectious diseases, 2017. 215(suppl_2): p. S96-S102.Tian, Y.-S., et al., Dengue virus and its inhibitors: a brief review. Chemical and Pharmaceutical Bulletin, 2018. 66(3): p. 191-206.Jassim, S.A. and M.A. Naji, Novel antiviral agents: a medicinal plant perspective. Journal of applied microbiology, 2003. 95(3): p. 412-427.Isah, T., Stress and defense responses in plant secondary metabolites production. Biological research, 2019. 52.González Mera, I.F., D. González Falconí, and V. Morera Córdova, Secondary metabolites in plants: Main classes, phytochemical analysis and pharmacological activities. Bionatura, 2019. 4(4): p. 1000-1009.García, A. and E. Carril, Pérez-Urria.(2009) Metabolismo secundario de plantas. Reduca (Biología). Serie Fisiología Vegetal. 2(3): p. 119-145.Bribi, N., Pharmacological activity of alkaloids: a review. Asian J. Bot, 2018. 1(1): p. 1-6.Kutchan, T.M., Alkaloid Biosynthesis [mdash] The Basis for Metabolic Engineering of Medicinal Plants. The plant cell, 1995. 7(7): p. 1059.Gershenzon, J. and N. Dudareva, The function of terpene natural products in the natural world. Nature chemical biology, 2007. 3(7): p. 408-414.Rodrıguez-Concepción, M. and A. Boronat, Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant physiology, 2002. 130(3): p. 1079-1089.Rodríguez-Pérez, C., A. Segura-Carretero, and M. del Mar Contreras, Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Critical reviews in food science and nutrition, 2019. 59(8): p. 1212-1229.Dai, J. and R.J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010. 15(10): p. 7313-7352.Krylova, N., A. Popov, and G. Leonova, Antioxidants as Potential Antiviral Agents for Flavivirus Infections. Antibiotiki i Khimioterapiia= Antibiotics and Chemoterapy [sic], 2016. 61(5-6): p. 25-31.Ghildiyal, R., et al., Phytochemicals as antiviral agents: recent updates. Plant-derived bioactives: production, properties and therapeutic applications, 2020: p. 279-295.Loaiza-Cano, V., et al., Antiviral role of phenolic compounds against dengue virus: A review. Biomolecules, 2020. 11(1): p. 11.Davis, A.P., et al., An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, 2006. 152(4): p. 465-512.Roa, G., et al., Beneficio ecológico del café. 1999, Chinchiná, Cenicafé. p. 273.Ramos, P., J. Sanz, and C. Oliveros, Identificación y clasificación de frutos de café en tiempo real a través de la medición de color. 2014.Jiménez, E.R., Café I (G. Coffea). Reduca (Biologia). Serie Botánica, 2014. 7(2): p. 113-132.Reguengo, L.M., et al., Agro-industrial by-products: Valuable sources of bioactive compounds. Food Research International, 2022. 152: p. 110871.Rendón, J.C.M., C.F.A. Villalobos, and F.A.R. Ledesma, Mirada a los aspectos económicos, financieros, sociales y ambientales del cultivo del café en Colombia-2022. Documentos de Trabajo ECACEN, 2023(1): p. 144-161.Huancas-Segura, A.F., V. Castro-Ramírez, and J.E. González-Díaz, Comportamiento de las Exportaciones de Café colombiano durante el periodo 2019-2023. Revista científica anfibios, 2024. 7(2): p. 36-46.Mendoza, L.V. and C.G.-M. Aparicio, Impactos socioeconómicos de la producción de café en Colombia. Revista Científica de la UCSA, 2023. 10(2): p. 43-53.Mendoza, L.V. and C.G.-M. Aparicio, Impactos socioeconómicos de la producción de café en Colombia. Revista Científica de la UCSA, 2023. 10(2).Sanz, J., et al., Proceso de beneficio, in En Federación Nacional de Cafeteros de Colombia, Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura. 2013, Cenicafé. p. 09-47.Ballesteros, L.F., J.A. Teixeira, and S.I. Mussatto, Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and bioprocess technology, 2014. 7: p. 3493-3503.Janissen, B. and T. Huynh, Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and recycling, 2018. 128: p. 110-117.Yashin, A., et al., Antioxidant and antiradical activity of coffee. Antioxidants, 2013. 2(4): p. 230-245.Liang, N. and D.D. Kitts, Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules, 2014. 19(11): p. 19180-19208.Motohashi, H. and M. Yamamoto, Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in molecular medicine, 2004. 10(11): p. 549-557.Silva, C.S., et al., Coffee industrial waste as a natural source of bioactive compounds with antibacterial and antifungal activities. The battle against microbial pathogens: Basic science, technological advances and educational programs, 2015: p. 131-136.Castro-Díaz, R., et al., The Antimicrobial Effects of Coffee and By-Products and Their Potential Applications in Healthcare and Agricultural Sectors: A State-of-Art Review. Microorganisms, 2025. 13(2): p. 215.Rebollo-Hernanz, M., et al., Revalorization of coffee husk: Modeling and optimizing the green sustainable extraction of phenolic compounds. Foods, 2021. 10(3): p. 653.Utsunomiya, H., et al., Antiviral activities of coffee extracts in vitro. Food and Chemical Toxicology, 2008. 46(6): p. 1919-1924.Utsunomiya, H., et al., Inhibition by caffeic acid of the influenza A virus multiplication in vitro. International journal of molecular medicine, 2014. 34(4): p. 1020-1024.Wang, G.-F., et al., Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral research, 2009. 83(2): p. 186-190.Wu, C.-S., et al., Coffee as a dietary strategy to prevent SARS-CoV-2 infection. Cell & Bioscience, 2023. 13(1): p. 210.Sinisi, V., et al., Chlorogenic compounds from coffee beans exert activity against respiratory viruses. Planta Medica, 2017. 83(07): p. 615-623.Tang, L.I., et al., Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC complementary and alternative medicine, 2012. 12: p. 1-10.Rosmalena, R., et al., The antiviral effect of indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens, 2019. 8(2): p. 85.Parida, M., et al., Inhibitory potential of neem (Azadirachta indica Juss) leaves on dengue virus type-2 replication. Journal of ethnopharmacology, 2002. 79(2): p. 273-278.Silva, A., et al., Antiviral activities of extracts and phenolic components of two Spondias species against dengue virus. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2011. 17: p. 406-413.Hernández-Castro, C., F. Diaz-Castillo, and M. Martínez-Gutierrez, Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2. Asian Pacific Journal of Tropical Disease, 2015. 5(2): p. 98-106.Jiménez-Posada, E.V., S. Robledo, and M. Martínez-Gutiérrez, Actividad antiviral in vitro frente a arbovirus de extractos metanólicos obtenidos de plantas nativas de la región cafetera pertenecientes a la familia Solanaceae. Iatreia, 2022. 35(1-S): p. S33-S34.Gómez-Calderón, C., et al., Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC complementary and alternative medicine, 2017. 17: p. 1-12.Monsalve-Escudero, L.M., et al., The antiviral and virucidal activities of voacangine and structural analogs extracted from Tabernaemontana cymosa depend on the Dengue virus strain. Plants, 2021. 10(7): p. 1280.Trujillo-Correa, A.I., et al., In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC complementary and alternative medicine, 2019. 19: p. 1-16.Muñoz-Jordán, J.L., et al., Inhibition of interferon signaling by dengue virus. Proceedings of the National Academy of Sciences, 2003. 100(24): p. 14333-14338.Chuang, Y.-C., H.-R. Chen, and T.-M. Yeh, Pathogenic roles of macrophage migration inhibitory factor during dengue virus infection. Mediators of inflammation, 2015. 2015(1): p. 547094.Schmid, M.A., M.S. Diamond, and E. Harris, Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Frontiers in immunology, 2014. 5: p. 647.Halstead, S. and P. Simasthien, Observations related to the pathogenesis of dengue hemorrhagic fever. II. Antigenic and biologic properties of dengue viruses and their association with disease response in the host. The Yale journal of biology and medicine, 1970. 42(5): p. 276.Reyes-del Valle, J., et al., Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. Journal of virology, 2005. 79(8): p. 4557-4567.Kyle, J.L., P.R. Beatty, and E. Harris, Dengue virus infects macrophages and dendritic cells in a mouse model of infection. The Journal of infectious diseases, 2007. 195(12): p. 1808-1817.Stöckbauer, P., et al., Differentiation of human myeloid leukemia cell lines induced by tumor-promoting phorbol ester (TPA). I. Changes of the morphology, cytochemistry and the surface differentiation antigens analyzed with monoclonal antibodies. Neoplasma, 1983. 30(3): p. 257-272.Martínez-Gutierrez, M., J.E. Castellanos, and J.C. Gallego-Gómez, Statins reduce dengue virus production via decreased virion assembly. Intervirology, 2011. 54(4): p. 202-216.Monsalve Escudero, L.M., Actividad antiviral in vitro e interacciones In silico de alcaloides indólicos aislados de Tabernaemontana cymosa frente a la infección por los virus Zika, Chikungunya y Dengue. 2019.Zapata Cardona, M.I., Actividad antiviral in vitro e in silico de compuestos isoprenoides contra los virus Dengue, Chikungunya y Zika. 2020.Loaiza-Cano, V., et al., In vitro and in silico anti-Arboviral activities of Dihalogenated phenolic Derivaties of L-tyrosine. Molecules, 2021. 26(11): p. 3430.Ocampo-López, O.L. and L.M. Alvarez-Herrera, Tendencia de la producción y el consumo del café en Colombia. Apuntes del CENES, 2017. 36(64): p. 139-165.Murthy, P.S. and M.M. Naidu, Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and recycling, 2012. 66: p. 45-58.Weiland, S., et al., The 2030 agenda for sustainable development: transformative change through the sustainable development goals? Politics and Governance, 2021. 9(1): p. 90-95.Gil-Gómez, J.A., L.M. Florez-Pardo, and Y.C. Leguizamón-Vargas, Valorization of coffee by-products in the industry, a vision towards circular economy. Discover Applied Sciences, 2024. 6(9): p. 480.Rodríguez-Morales, A.J., et al., The Epidemiological Impact of Dengue in Colombia: A Systematic Review. The American Journal of Tropical Medicine and Hygiene, 2024. 112(1): p. 182.Instituto Nacional de Salud (INS), Boletín Epidemiológico Semanal: semana 52 de 2022. 2022, Ministerio de Salud de Colombia: Bogotá.Instituto Nacional de Salud (INS), Boletín Epidemiológico Semanal: semana 52 de 2023. 2023, Ministerio de Salud de Colombia: Bogotá.Instituto Nacional de Salud (INS), Boletín Epidemiológico Semanal: semana 52 de 2024. 2024, Ministerio de Salud de Colombia: Bogotá.Instituto Nacional de Salud (INS), Boletín Epidemiológico Semanal: semana 17 de 2025. 2025, Ministerio de Salud de Colombia: Bogotá.Parker, W.B., Metabolism and antiviral activity of ribavirin. Virus research, 2005. 107(2): p. 165-171.Low, Z.X., et al., Antiviral activity of silymarin and baicalein against dengue virus. Scientific Reports, 2021. 11(1): p. 21221.Rothan, H.A., et al., Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC infectious diseases, 2012. 12: p. 1-9.Wei, Z.-X., T.-T. Tang, and S.-P. Jiang, The antiviral mechanisms, effects, safety and adverse effects of chloroquine. European Review for Medical & Pharmacological Sciences, 2020. 24(12).Horton, L., et al., Spectrum of virucidal activity from ultraviolet to infrared radiation. Photochemical & Photobiological Sciences, 2020. 19: p. 1262-1270.Matrosovich, M., et al., New low-viscosity overlay medium for viral plaque assays. Virology journal, 2006. 3: p. 1-7.Chien, L.-J., et al., Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. Journal of clinical microbiology, 2006. 44(4): p. 1295-1304.Tambunan, U.S.F., et al., Computational design of disulfide cyclic peptide as potential inhibitor of complex NS2B-NS3 dengue virus protease. African Journal of Biotechnology, 2011. 10(57): p. 12281-12290.Yap, T.L., et al., Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. Journal of virology, 2007. 81(9): p. 4753-4765.Echeverria, M. and M. Nuti, Valorisation of the residues of coffee agro-industry: perspectives and limitations. Open Waste Manag. J, 2017. 10(1): p. 13-22.Fernandes, A., et al., Impacts of discarded coffee waste on human and environmental health. Ecotoxicology and environmental safety, 2017. 141: p. 30-36.Lee, Y.-G., et al., Value-added products from coffee waste: a review. Molecules, 2023. 28(8): p. 3562.Silva, M.d.O., et al., Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) using different extraction methods. Molecules, 2020. 26(1): p. 46.Torres-Valenzuela, L.S., J.A. Serna-Jiménez, and K. Martínez, Coffee by-products: Nowadays and perspectives. Coffee—Production and Research, 2020: p. 1-18.Martínez-Betancur, V. and M. Martínez-Gutierrez, Proteomic profile of human monocytic cells infected with dengue virus. Asian Pacific Journal of Tropical Biomedicine, 2016. 6(11): p. 914-923.Raheel, U., M. Jamal, and N.U.S.S. Zaidi, A molecular approach designed to limit the replication of mature DENV2 in host cells. Viral Immunology, 2015. 28(7): p. 378-384.Puerta-Guardo, H., et al., The 1α, 25-dihydroxy-vitamin D3 reduces dengue virus infection in human myelomonocyte (U937) and hepatic (Huh-7) cell lines and cytokine production in the infected monocytes. Antiviral research, 2012. 94(1): p. 57-61.Farias, K.J.S., et al., Chloroquine interferes with dengue‐2 virus replication in U937 cells. Microbiology and immunology, 2014. 58(6): p. 318-326.Angeloni, S., et al., Antioxidant and Anti‐Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2021. 2021(1): p. 6620913.Iriondo-DeHond, A., et al., Validation of coffee by-products as novel food ingredients. Innovative Food Science & Emerging Technologies, 2019. 51: p. 194-204.Zeng, K., et al., Synthesis and biological evaluation of quinic acid derivatives as anti-inflammatory agents. Bioorganic & medicinal chemistry letters, 2009. 19(18): p. 5458-5460.Schiller, L., et al., Bioactive plant compounds in coffee charcoal (Coffeae carbo) extract inhibit cytokine release from activated human THP-1 macrophages. Molecules, 2019. 24(23): p. 4263.Nascimento, C.R., et al., Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies. Biochemistry and Biophysics Reports, 2022. 32: p. 101383.Song, M.-g., et al., NRF2 signaling negatively regulates phorbol-12-myristate-13-acetate (PMA)-induced differentiation of human monocytic U937 cells into pro-inflammatory macrophages. PLoS One, 2015. 10(7): p. e0134235.Ding, Y., et al., Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Scientific reports, 2017. 7(1): p. 45723.Joseph, B., et al., In vitro study on cytotoxic effect and anti-DENV2 activity of Carica papaya L. leaf. Frontiers in Life Science, 2015. 8(1): p. 18-22.Zanello, P.R., et al., Quinic acid derivatives inhibit dengue virus replication in vitro. Virology journal, 2015. 12: p. 1-13.Dwivedi, V.D., et al., Genomics, proteomics and evolution of dengue virus. Briefings in functional genomics, 2017. 16(4): p. 217-227.Goo, L., et al., A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS pathogens, 2017. 13(2): p. e1006178.Cockburn, J.J., et al., Mechanism of dengue virus broad cross-neutralization by a monoclonal antibody. Structure, 2012. 20(2): p. 303-314.Flores-Ocelotl, M.R., et al., Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC complementary and alternative medicine, 2018. 18: p. 1-10.Zandi, K., et al., Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology journal, 2011. 8: p. 1-11.Kok, B.H., et al., Dengue virus infection–a review of pathogenesis, vaccines, diagnosis and therapy. Virus research, 2023. 324: p. 199018.Madushanka, A., et al., Papaya leaf extracts as potential dengue treatment: an in-silico study. International journal of molecular sciences, 2022. 23(20): p. 12310.Dhoju, N. and T.R. Lamichhane, Inhibitory Activity of Myricetin and Chlorogenic Acid against Dengue Virus NS2b/NS3 Protease through In Silico Approaches. Journal of Institute of Science and Technology, 2024. 29(2): p. 85-98.Pan, A., et al., Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin. Biological Crystallography, 2017. 73(5): p. 402-419.Senthilvel, P., et al., Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly. Bioinformation, 2013. 9(18): p. 889.de Sousa, L.R.F., et al., Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorganic & medicinal chemistry, 2015. 23(3): p. 466-470.Iempridee, T., et al., A comparative biochemical analysis of the NS2B (H)–NS3pro protease complex from four dengue virus serotypes. Biochimica et Biophysica Acta (BBA)-General Subjects, 2008. 1780(7-8): p. 989-994.Kim, Y.M., et al., NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. Journal of Biological Chemistry, 2013. 288(18): p. 12891-12900.Wahaab, A., et al., Potential role of flavivirus NS2B-NS3 proteases in viral pathogenesis and antiflavivirus drug discovery employing animal cells and models: a review. Viruses, 2021. 14(1): p. 44.Nitsche, C., et al., Peptide–boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. Journal of medicinal chemistry, 2017. 60(1): p. 511-516.Hitakarun, A., et al., Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, Zika virus and chikungunya virus. Scientific reports, 2020. 10(1): p. 1499.PublicationORIGINALGaitanVeloza_2025_Antiviral_Serotipos_Dengue.pdfGaitanVeloza_2025_Antiviral_Serotipos_Dengue.pdfapplication/pdf1500153https://bibliotecadigital.udea.edu.co/bitstreams/0739b7d8-a81d-4ec9-84ef-3bb8041b556b/download20e08939828f8e554618d2fa0f7e7209MD57trueAnonymousREAD2027-10-23LICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/acfe676f-ec65-4327-8fec-a63af672371e/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD54falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/76b20f58-472c-40c7-afcc-09f72985330c/download5643bfd9bcf29d560eeec56d584edaa9MD58falseAnonymousREADTEXTGaitanVeloza_2025_Antiviral_Serotipos_Dengue.pdf.txtGaitanVeloza_2025_Antiviral_Serotipos_Dengue.pdf.txtExtracted texttext/plain101893https://bibliotecadigital.udea.edu.co/bitstreams/8a4f67c6-11bb-4a85-a5cc-740f28b44abc/download8662b5cfa10de7f5c4bb5fdb3de28b0bMD59falseAnonymousREAD2027-10-23THUMBNAILGaitanVeloza_2025_Antiviral_Serotipos_Dengue.pdf.jpgGaitanVeloza_2025_Antiviral_Serotipos_Dengue.pdf.jpgGenerated Thumbnailimage/jpeg9322https://bibliotecadigital.udea.edu.co/bitstreams/63614b8f-5dd3-498a-a6c2-94146578a0d8/download031c092cf933ab7fc5f623299fbb22f5MD510falseAnonymousREAD2027-10-2310495/47918oai:bibliotecadigital.udea.edu.co:10495/479182025-10-24 04:01:57.916http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-10-23https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=