Pulse-level characterization of qubits on quantum devices

ABSTRACT: Recent research has tackled the problem of mitigating noise present in quantum computers in the Noisy Intermediate-Scale Quantum (NISQ) era to enable precise computations and to benefit from the intrinsic properties of quantum mechanics. For this matter, an important task is the characteri...

Full description

Autores:
Quiroga Salamanca, David Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/22001
Acceso en línea:
http://hdl.handle.net/10495/22001
Palabra clave:
Quantum theory
Teoría cuántica
Algorithms
Algoritmo
Calibration
Calibración
Crosstalk
Machine Learning
Quantum Benchmarks
Quantum Computing
Quantum Machine Learning
Quantum Optimal Control
http://vocabularies.unesco.org/thesaurus/concept4810
http://vocabularies.unesco.org/thesaurus/concept2024
http://vocabularies.unesco.org/thesaurus/concept4530
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_579e61960e80a44506092fc417cccc16
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/22001
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Pulse-level characterization of qubits on quantum devices
title Pulse-level characterization of qubits on quantum devices
spellingShingle Pulse-level characterization of qubits on quantum devices
Quantum theory
Teoría cuántica
Algorithms
Algoritmo
Calibration
Calibración
Crosstalk
Machine Learning
Quantum Benchmarks
Quantum Computing
Quantum Machine Learning
Quantum Optimal Control
http://vocabularies.unesco.org/thesaurus/concept4810
http://vocabularies.unesco.org/thesaurus/concept2024
http://vocabularies.unesco.org/thesaurus/concept4530
title_short Pulse-level characterization of qubits on quantum devices
title_full Pulse-level characterization of qubits on quantum devices
title_fullStr Pulse-level characterization of qubits on quantum devices
title_full_unstemmed Pulse-level characterization of qubits on quantum devices
title_sort Pulse-level characterization of qubits on quantum devices
dc.creator.fl_str_mv Quiroga Salamanca, David Andrés
dc.contributor.advisor.none.fl_str_mv Rivera Vélez, Fredy Alexander
Pooser, Raphael C.
dc.contributor.author.none.fl_str_mv Quiroga Salamanca, David Andrés
dc.subject.unesco.none.fl_str_mv Quantum theory
Teoría cuántica
Algorithms
Algoritmo
Calibration
Calibración
topic Quantum theory
Teoría cuántica
Algorithms
Algoritmo
Calibration
Calibración
Crosstalk
Machine Learning
Quantum Benchmarks
Quantum Computing
Quantum Machine Learning
Quantum Optimal Control
http://vocabularies.unesco.org/thesaurus/concept4810
http://vocabularies.unesco.org/thesaurus/concept2024
http://vocabularies.unesco.org/thesaurus/concept4530
dc.subject.proposal.spa.fl_str_mv Crosstalk
Machine Learning
Quantum Benchmarks
Quantum Computing
Quantum Machine Learning
Quantum Optimal Control
dc.subject.unescouri.none.fl_str_mv http://vocabularies.unesco.org/thesaurus/concept4810
http://vocabularies.unesco.org/thesaurus/concept2024
http://vocabularies.unesco.org/thesaurus/concept4530
description ABSTRACT: Recent research has tackled the problem of mitigating noise present in quantum computers in the Noisy Intermediate-Scale Quantum (NISQ) era to enable precise computations and to benefit from the intrinsic properties of quantum mechanics. For this matter, an important task is the characterization of qubits available in quantum devices so as to provide insights on how to reduce noise on the final output of a quantum circuit. Characterization comprises analysis of noise sources and this information can be used to reduce noise with methods such as Cycle Benchmarking, Quantum Error Mitigation, Quantum Error Correction and others. Here, we study optimization of pulses through Quantum Optimal Control (QOC) to obtain higher gate fidelity. We will explore an algorithm that performs calibration on specific quantum gates by implementing optimized pulse schedules to subsequently use the algorithm for analysis of noise sources. Using calibrated gates as input, several benchmarking protocols, including pulse noise extrapolation, leakage analysis from quantum optimal control, and machine learning based classification of qubit readout, will be tested to extract precise information on how noise influences the analyzed qubits. We will explain and discuss different techniques for obtaining properties of qubits and quantum computers. We will implement state discrimination with a Machine Learning (ML) focus to analyze readout errors caused by factors such as cross-talk and leakage into higher quantum states. We will perform noise fitting of optimized pulses and evaluate the effectiveness of important quantum algorithms at the pulse level.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-30T19:53:46Z
dc.date.available.none.fl_str_mv 2021-08-30T19:53:46Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/22001
url http://hdl.handle.net/10495/22001
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.extent.spa.fl_str_mv 97
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.group.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad de Antioquia
bitstream.url.fl_str_mv http://bibliotecadigital.udea.edu.co/bitstream/10495/22001/6/license_rdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/22001/4/DavidQuiroga_2021_PulseLevelCharacterization.pdf
http://bibliotecadigital.udea.edu.co/bitstream/10495/22001/7/license.txt
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
07e04e0c16f68d376f2538d863c5b40b
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Antioquia
repository.mail.fl_str_mv andres.perez@udea.edu.co
_version_ 1812173144763400192
spelling Rivera Vélez, Fredy AlexanderPooser, Raphael C.Quiroga Salamanca, David Andrés2021-08-30T19:53:46Z2021-08-30T19:53:46Z2021http://hdl.handle.net/10495/22001ABSTRACT: Recent research has tackled the problem of mitigating noise present in quantum computers in the Noisy Intermediate-Scale Quantum (NISQ) era to enable precise computations and to benefit from the intrinsic properties of quantum mechanics. For this matter, an important task is the characterization of qubits available in quantum devices so as to provide insights on how to reduce noise on the final output of a quantum circuit. Characterization comprises analysis of noise sources and this information can be used to reduce noise with methods such as Cycle Benchmarking, Quantum Error Mitigation, Quantum Error Correction and others. Here, we study optimization of pulses through Quantum Optimal Control (QOC) to obtain higher gate fidelity. We will explore an algorithm that performs calibration on specific quantum gates by implementing optimized pulse schedules to subsequently use the algorithm for analysis of noise sources. Using calibrated gates as input, several benchmarking protocols, including pulse noise extrapolation, leakage analysis from quantum optimal control, and machine learning based classification of qubit readout, will be tested to extract precise information on how noise influences the analyzed qubits. We will explain and discuss different techniques for obtaining properties of qubits and quantum computers. We will implement state discrimination with a Machine Learning (ML) focus to analyze readout errors caused by factors such as cross-talk and leakage into higher quantum states. We will perform noise fitting of optimized pulses and evaluate the effectiveness of important quantum algorithms at the pulse level.RESUMEN: Investigaciones recientes han abarcado el problema de mitigar ruido presente en computadores cuánticos en la era NISQ para permitir computaciones precisas y para encontrar ventajas en las propiedades intrínsecas de la mecánica cuántica. Para tal efecto, una tarea importante es la caracterización de qubits disponibles en computadores cuánticos para proveer información sobre cómo reducir ruido en la salida final de un circuito cuántico. La caracterización comprende el análisis de fuentes de ruido y esta información puede ser usada para reducir ruido con métodos como Cycle Benchmarking, Quantum Error Mitigation, Quantum Error Correction y otros. Aquí estudiamos optimización de pulsos a través de QOC para obtener fidelidades de compuerta más altas. Exploraremos un algoritmo que realiza calibración a compuertas cuánticas específicas implementando pulsos optimizados para consecuentemente utilizar el algoritmo para análisis de fuentes de ruido. Usando compuertas calibradas como entrada, varios protocolos de benchmarking incluyendo extrapolación de ruido, análisis de fuga con control cuántico óptimo y clasificación de datos de salida de qubits basada en machine learning serán probados para extraer información precisa de cómo el ruido influye los qubits analizados. Explicaremos y discutiremos diferentes técnicas para obtener propiedades de qubits y de computadores cuánticos. Implementaremos discriminación de estados con un enfoque en ML para alanizar errores de lectura causados por factores como charla cruzada y fuga hacia estados cuánticos más altos. Realizaremos ajuste del ruido de pulsos optimizados para evaluar la efectividad de algoritmos cuánticos importantes a nivel de pulsos.97application/pdfenginfo:eu-repo/semantics/draftinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/co/http://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by-nc-sa/4.0/Pulse-level characterization of qubits on quantum devicesSistemas Embebidos e Inteligencia Computacional (SISTEMIC)MedellínQuantum theoryTeoría cuánticaAlgorithmsAlgoritmoCalibrationCalibraciónCrosstalkMachine LearningQuantum BenchmarksQuantum ComputingQuantum Machine LearningQuantum Optimal Controlhttp://vocabularies.unesco.org/thesaurus/concept4810http://vocabularies.unesco.org/thesaurus/concept2024http://vocabularies.unesco.org/thesaurus/concept4530Profesional en Ingeniería de SistemasPregradoFacultad de Ingeniería. Carrera de Ingeniería de SistemasUniversidad de AntioquiaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927http://bibliotecadigital.udea.edu.co/bitstream/10495/22001/6/license_rdf1646d1f6b96dbbbc38035efc9239ac9cMD56ORIGINALDavidQuiroga_2021_PulseLevelCharacterization.pdfDavidQuiroga_2021_PulseLevelCharacterization.pdfTrabajo de grado de pregradoapplication/pdf1686919http://bibliotecadigital.udea.edu.co/bitstream/10495/22001/4/DavidQuiroga_2021_PulseLevelCharacterization.pdf07e04e0c16f68d376f2538d863c5b40bMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://bibliotecadigital.udea.edu.co/bitstream/10495/22001/7/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5710495/22001oai:bibliotecadigital.udea.edu.co:10495/220012021-08-30 14:54:35.908Repositorio Institucional Universidad de Antioquiaandres.perez@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=