Redes neuronales artificiales aplicadas a la predicción del precio del oro
RESUMEN: En este trabajo se predice el comportamiento del precio del oro mediante un modelo basado en redes neuronales artificiales (RNA). El objetivo del modelo es predecir los precios de cierre diarios del mercado de Londres, los cuales son tomados como referencia por el Banco central de Colombia....
- Autores:
-
Muñoz Galeano, Nicolás
García Quintero, Edwin
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/13311
- Acceso en línea:
- http://hdl.handle.net/10495/13311
- Palabra clave:
- Mercado del oro
Mercados financieros
Predicción de precios
Redes neuronales artificiales
Neural networks
Price prediction
- Rights
- openAccess
- License
- Atribución-NoComercial 2.5 Colombia (CC BY-NC 2.5 CO)
Summary: | RESUMEN: En este trabajo se predice el comportamiento del precio del oro mediante un modelo basado en redes neuronales artificiales (RNA). El objetivo del modelo es predecir los precios de cierre diarios del mercado de Londres, los cuales son tomados como referencia por el Banco central de Colombia. Se estudian varias configuraciones de RNA tipo propagación hacia adelante tomando como variables de entrada las series diarias del índice del dólar estadounidense DXY, el índice SP500, los precios del petróleo y los precios del oro. Se entrenan diferentes estructuras de RNA utilizando la serie histórica de datos, donde una parte de los mismos se utiliza para entrenamiento y la restante para la predicción. Los resultados obtenidos muestran un buen desempeño del modelo tanto en el periodo histórico analizado como en la predicción, encontrando como mejor estructura aquella que utiliza las series de precios diarias del oro, el índice DXY y el índice SP500. |
---|